Corrupt Bandits for Preserving Local Privacy

Pratik Gajane " Tanguy Urvoy 2 Emilie Kaufmann 3
7" April 2018

"Montanuniversitit Leoben

2Orange labs

3CNRS & Univ. Lille & Inria-Sequel



Motivation and Formalization

Lower Bound on Regret

Proposed Algorithms

Experiments

Final Remarks



Motivation and Formalization



Classical Stochastic Bandits

- Karms/actions

- Unknown reward distributions with
mean g for arm a

- Learner pulls arm a

- receives reward ~ distribution for a

- feedback = received reward
(Absolute feedback)

- Regret = best possible reward - reward of pulled arm

- Learner’s goal = minimize cumulative regret



Motivation for Corrupt Bandits: Privacy



Motivation for Corrupt Bandits: Privacy

“If you're doing something that you don’t want other people to know,
maybe you shouldn’t be doing it in first place”

“Privacy is no longer a social norm!”



Local Differential Privacy
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Figure 1: Ad system using bandits

- Ad application as bandit problem.
- Feedback from users on ads (arms).
- Information about user tastes as output to advertisers.
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Figure 1: Ad system using bandits

- Ad application as bandit problem.

- Feedback from users on ads (arms).

- Information about user tastes as output to advertisers.
- Local differential privacy (DP), by Duchi et al.(2014) [2].
- Classical bandits unable to deal with noisy feedback.



Questions???

- Bandit setting to deal with Corrupted/Noisy Feedback?
- Regret Lower Bound for such Bandit setting?

- Algorithms to solve this Bandit setting?



Corrupt Bandits: Formalization

- Formally characterized by

- Karms

- unknown reward distribution with mean puq for each a

- unknown feedback distribution with mean A, for each a
- known mean corruption function g, for each a

* ga(Ha) = Aa
- Learner’s goal: minimize cumulative regret



Lower Bound on Regret




Lower Bound

Theorem (Thm. 1, PG, Urvoy & Kaufmann(2018) [4])

Any algorithm for a Bernoulli corrupt bandit problem satisfies,

RegretT Aq
lim inf oL e T
minf oo Zd(xa,gaw))

where d(x,y) := KL(B(x), B(y))

- A, = optimal mean reward - mean reward of a (uq)
- 1is assumed to be the optimal arm w.l.o.g.
+ Aa = ga(ua)- Behaviour of gq on pe and py affects lower bound.



Proposed Algorithms




Proposed algorithm: k1-UCB-CF

Algorithm: kl-UCB-CF

Pull at time t an arm maximizing

Index,(t) = max{q : Na(t) - d(Aa(t), 9a(q)) < f(t)}

- Similar to kI-UCB by Cappé et al. (2013) [1] for classical bandits.

- Indexq(t) = UCB on g from confidence interval on Aq and using
exploration function f

- Xo(t) = emp. mean of feedback of a until time t
- UCB1 (Auer et al. (2002)) can be updated to UCB-CF.



Upper Bound for k1-UCB-CF

Theorem (Thm. 2, PG, Urvoy & Kaufmann(2018) [4])

Regret of KI-UCB-CF < Yo5_, 75220 4 0(/Tog(T)).
- Recall that 1is assumed to be the optimal arm.
- More explicit bound can be provided.

- Optimal as upper bound matches lower bound.



Proposed Algorithm: TS-CF

Algorithm: TS-CF

1. Sample 04(t) from Beta posterior distribution on mean feedback
of arm a.

2. Pull arm 41 = argmax ga ' (a(t)).

- Similar to Thompson sampling by Thompson (1933) [5] for
classical bandits.

- Probability (a is played) = posterior probability (a is optimal).



Upper Bound for TS-CF

Theorem (Thm. 3, PG, Urvoy & Kaufmann(2018) [4])

Regret of TS-CF < 37K %% + 0(y/log(T))

- Recall that 1is assumed the be the optimal arm.
- Atighter bound can be provided.
- Optimal as upper bound matches lower bound.



Experiments




Experiments with varying time

- Bernoulli corrupt bandit: 7 = 0.9 po =+ = o= 0.6
- Comparison over a period of time for fixed corruption
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Figure 2: Regret plots with varying T up to 10°



Experiments with varying Local DP

- Bernoulli corrupt bandit: iy = 0.9 pp =---=pp=0.6

- Comparison with varying level of Local DP; e from
{1/8,1/4,1/2,1,2, 4,8}

o—s TSCF
=—a KLUCB-CF
-- B

10!
0125 025 05 10 20 2.0 8.0

Figure 3: Regret with varying level of Local DP



Final Remarks




Final Remarks

Covered in this talk:

- Introduced Corrupt Bandits to provide privacy.

- Proved the lower bound. Provided optimal algorithms matching
the lower bound.
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Covered in this talk:

- Introduced Corrupt Bandits to provide privacy.

- Proved the lower bound. Provided optimal algorithms matching
the lower bound.

Not covered in this talk:

- Provided optimal mechanism for achieving local DP.

- Proved regret guarantees for achieving required level of local DP
(Trade-off between utility and privacy).

Future work:

- Contextual corruption?

- Corrupted feedback in RL? (a recent publication by Everitt et al.
(2017) [3]).
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Thank you all.
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Interpretation of Lower Bound for Corrupt Bandits

- Divergence between A\, and gq(u1) plays a crucial role in
distinguishing arm a from the optimal arm.
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Figure 4: On the left, gq is such that \q = ga(m1). On the right, a steep
monotonic g, leads Aq = 1 — g into a clear gap between Aq and ga().

- If the g4 function is non-monotonic, it might be impossible to
distinguish between arm a and the optimal arm.
- Assumption: Corruption functions strictly monotonic.



Optimal mechanism for local DP and regret

- Corruption matrix

0 1

0o | £ 1
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Corollary

The regret of kI-UCB-CF or TS-CF at time T with e-locally
differentially private bandit feedback corruption scheme is

Regret; < i AZlo—g(T)z + O(4/log (T)).

a= Da(&5)



Local DP vs global DP

- For low values of (g—j) ~€/2.

- In-line with global DP algorithms with a multiplicative factor of
O(e=") or O(e2).

- One global DP algorithm with additive factor of O(e~"). Our

lower bound shows that's not possible for local DP.
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