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Motivation and Formalization



Classical Stochastic Bandits

• K arms/actions

• Unknown reward distributions with
mean µa for arm a

• Learner pulls arm a
• receives reward ∼ distribution for a

• feedback = received reward
(Absolute feedback)

• Regret = best possible reward - reward of pulled arm
• Learner’s goal = minimize cumulative regret
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Motivation for Corrupt Bandits: Privacy
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Local Differential Privacy
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Figure 1: Ad system using bandits

• Ad application as bandit problem.
• Feedback from users on ads (arms).
• Information about user tastes as output to advertisers.

• Local differential privacy (DP), by Duchi et al.(2014) [2].
• Classical bandits unable to deal with noisy feedback.
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Questions???

• Bandit setting to deal with Corrupted/Noisy Feedback?
• Regret Lower Bound for such Bandit setting?
• Algorithms to solve this Bandit setting?
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Corrupt Bandits: Formalization

• Formally characterized by
• K arms
• unknown reward distribution with mean µa for each a
• unknown feedback distribution with mean λa for each a
• known mean corruption function ga for each a

• ga(µa) = λa

• Learner’s goal: minimize cumulative regret
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Lower Bound on Regret



Lower Bound

Theorem (Thm. 1, PG, Urvoy & Kaufmann(2018) [4])

Any algorithm for a Bernoulli corrupt bandit problem satisfies,

lim inf
T→∞

RegretT
log(T) ≥

K∑
a=2

∆a
d (λa,ga(µ1))

.

where d(x, y) := KL(B(x),B(y))

• ∆a = optimal mean reward - mean reward of a (µa)
• 1 is assumed to be the optimal arm w.l.o.g.
• λa = ga(µa). Behaviour of ga on µa and µ1 affects lower bound.
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Proposed Algorithms



Proposed algorithm: kl-UCB-CF

Algorithm: kl-UCB-CF
Pull at time t an arm maximizing

Indexa(t) := max{q : Na(t) · d(λ̂a(t),ga(q)) ≤ f(t)}

• Similar to kl-UCB by Cappé et al. (2013) [1] for classical bandits.
• Indexa(t) = UCB on µa from confidence interval on λa and using
exploration function f

• λ̂a(t) = emp. mean of feedback of a until time t
• UCB1 (Auer et al. (2002)) can be updated to UCB-CF.
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Upper Bound for kl-UCB-CF

Theorem (Thm. 2, PG, Urvoy & Kaufmann(2018) [4])

Regret of kl-UCB-CF ≤
∑K

a=2
∆a log(T)

d(λa,ga(µ1)) + O(
√
log(T)).

• Recall that 1 is assumed to be the optimal arm.
• More explicit bound can be provided.
• Optimal as upper bound matches lower bound.
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Proposed Algorithm: TS-CF

Algorithm: TS-CF
1. Sample θa(t) from Beta posterior distribution on mean feedback
of arm a.
2. Pull arm ât+1 = argmax

a
g−1a (θa(t)).

• Similar to Thompson sampling by Thompson (1933) [5] for
classical bandits.

• Probability (a is played) = posterior probability (a is optimal).
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Upper Bound for TS-CF

Theorem (Thm. 3, PG, Urvoy & Kaufmann(2018) [4])

Regret of TS-CF ≤
∑K

a=2
2∆a log(T)
d(λa,ga(µ1)) + O(

√
log(T))

• Recall that 1 is assumed the be the optimal arm.
• A tighter bound can be provided.
• Optimal as upper bound matches lower bound.
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Experiments



Experiments with varying time

• Bernoulli corrupt bandit: µ1 = 0.9 µ2 = · · · = µ10 = 0.6
• Comparison over a period of time for fixed corruption
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Figure 2: Regret plots with varying T up to 105
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Experiments with varying Local DP

• Bernoulli corrupt bandit: µ1 = 0.9 µ2 = · · · = µ10 = 0.6
• Comparison with varying level of Local DP; ϵ from
{1/8, 1/4, 1/2, 1, 2, 4, 8}
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Figure 3: Regret with varying level of Local DP
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Final Remarks

Covered in this talk:

• Introduced Corrupt Bandits to provide privacy.
• Proved the lower bound. Provided optimal algorithms matching
the lower bound.
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Thank you all.
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Interpretation of Lower Bound for Corrupt Bandits

• Divergence between λa and ga(µ1) plays a crucial role in
distinguishing arm a from the optimal arm.

(a) Uninformative ga function. (b) Informative ga function.

Figure 4: On the left, ga is such that λa = ga(µ1). On the right, a steep
monotonic ga leads ∆a = µ1 − µa into a clear gap between λa and ga(µ1).

• If the ga function is non-monotonic, it might be impossible to
distinguish between arm a and the optimal arm.

• Assumption: Corruption functions strictly monotonic.



Optimal mechanism for local DP and regret

• Corruption matrix

Ma =

[ 0 1

0 eϵ
1+eϵ

1
1+eϵ

1 1
1+eϵ

eϵ
1+eϵ

]
.

Corollary

The regret of kl-UCB-CF or TS-CF at time T with ϵ-locally
differentially private bandit feedback corruption scheme is

RegretT ≤
K∑
a=2

2 log(T)
∆a

( eϵ−1
eϵ+1

)2 + O(
√
log (T)).



Local DP vs global DP

• For low values of ϵ,
( eϵ−1
eϵ+1

)
≈ ϵ/2.

• In-line with global DP algorithms with a multiplicative factor of
O(ϵ−1) or O(ϵ−2).

• One global DP algorithm with additive factor of O(ϵ−1). Our
lower bound shows that’s not possible for local DP.
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