Variational Regret Bounds for Reinforcement Learning
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Introduction

e In a standard RL problem, the state-transition dynamics and the

reward functions are time-invariant.

=» Our setting: Both the transition dynamics and the reward func-
tions are dependent on the current time step.

Problem setting

e Fort=1,...,T, the learner chooses an action a; in the current
state s;,

— receives a reward r; with mean 7 (s, a),

— and observes a transition to the next state s;,1 according
to pt(st+1]sts at).

e Fort=1,...,T, let MDP M, = (S, A, 7, p;) denote the true
MDP at time t. Further, let S :=|S| and A := |A|.

e Assumption: For each M;f;<;<7y, the diameter (minimal ex-
pected time it takes to get from any state to any other state [1])
is upper bounded by D.

=» Variation: For time horizon T,
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e Goal: Minimize regret

T
Rr = v7(s1) — Z ry
t=1

where v7.(s1) is the optimal expected T-step reward achievable
by any policy starting in the initial state s;.

Main result : Regret Bound

With probability 1 — o0, the regret of variation-aware UCRL with
restarts (Algorithm 2) after any T steps is bounded as

Rr<T74-DS(Vi + V£)1/3T2/3\/ Alog (L6SATY

=» Optimal wrt time and variation parameters.
For (the simpler) bandit setting, a lower bound on the variational
regret given by Besbes et al. (2014) [3] shows that our bound is
optimal with respect to time and the variation.
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Algorithm 1: Variation-aware UCRL

1: Input: S, A, 9, variation parameters ‘77", VP,

2: Initialization: Set current time step t := 1.

3: for episode k=1,... do

4:  Set episode start ti := t. Let vi(s,a) = state-action counts for

visits in k, and Ng(s,a) = counts for visits before episode k.

5.  For s, € S and a € A, compute estimates
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Compute policy 7 :
6: Let My, be the set of plausible MDPs M with rewards 7(s, a)

and transition probabilities p(-|s, a) satisfying

N . ~ 8log (8S At} /6
r(s,a) —Ti(s,a)|< V" + \/maxg((l,Nk(tS,/a)))’ (1)

- . ~ 85 log (8S At3 /6
Hp(.‘S’ a) — pr(-[s, a)H1< e+ \/maxfl(,Nk(sljci)))° (2)

7. Use extended value iteration [1] to find an optimal policy 7 for
an optimistic MDP M, € M, such that
p(Mp, 7x) = maxppen, p* (M),
where p*(M') is the optimal average reward of M.
Execute policy 7:
8:  while v (s, T (s¢)) < max(1, Ni(s¢, Tr(St))), do
Choose action a; = Tk (S¢).
Obtain reward r;, and observe s;,1.
Set t =1+ 1.
end while

9: end for

Algorithm 2 : Variation-aware UCRL with restarts

. Input: S, A, ¢, variation V} and V7.
. Initialization: Set current time step 7 := 1.
. for phase1=1,... do

Perform variation-aware UCRL with confidence parameter § /272

for 0; := [

steps.

i
G
Set 7 =71 + 6;.

. end for

Im

MONTAN

UUUUUUUUUUUUU

Solution sketch

e Devise variation-aware UCRL (Algorithm 1) by adapting confi-
dence intervals (eq. (1) and eq. (2)) to account for the variation
in mean rewards and transition probabilities respectively.

e Restart variation-aware UCRL according to a suitable scheme
(cf. line 4 in Algorithm 2). For this, the algorithm needs to
know the variation V. and V7.

Analysis sketch

e Optimism: With high probability, the set of plausible MDPs

(line 6 in Algorithm 1) computed at any time ¢ contains the true
MDP M,.

Perturbation bound: For any two MDPs M and M’ whose
mean rewards differ by at most A" and whose L1-norm of the
transition probabilities is at most AP, it holds that

p* (M) — p*(M')] < A" + DA,
where D = maximum of the diameters of M and M.

Regret of variation-aware UCRL:
With probability 1 — o0, the regret of variation-aware UCRL is

bounded by 32DS\/ AT log (334T%) 4 2T(DVE + V).

Regret of variation-aware UCRL with restarts: We sum
up the regret over all the phases of variation-aware UCRL to
arrive at the main result.

Conclusion and Further Directions

e Performance guarantees that are optimal in time and variation
demonstrate that our algorithm is a competent solution for the
considered problem setting.

e Recently, variational bounds for the (contextual) bandit setting
have been derived when the variation is unknown [2|. Achieving
such bounds in RL is a worthwhile direction to pursue.
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