Main result : Regret Bound

With probability $1 - \delta$, the regret of variation-aware UCRL with restarts (Algorithm 2) after any T steps is bounded as

$$R_T \leq 74 \cdot DS(V_T^p + V_T^\beta)^{1/2}/T^{2/3} \sqrt{A \log \left(\frac{18S^2A^2T}{\delta} \right)}.$$

Optimal wrt time and variation parameters.

For (the simpler) bandit setting, a lower bound on the variational regret given by Besbes et al. (2014) [3] shows that our bound is optimal with respect to time and the variation.

Introduction

- In a standard RL problem, the state-transition dynamics and the reward functions are time-invariant.

Our setting: Both the transition dynamics and the reward functions are dependent on the current time step.

Problem setting

- For $t = 1, \ldots, T$, the learner chooses an action a_t in the current state s_t,
 - receives a reward r_t with mean $\bar{r}_t(s_t,a_t)$,
 - and observes a transition to the next state s_{t+1} according to $p_t(s_{t+1}|s_t,a_t)$.

- For $t = 1, \ldots, T$, let MDP $M_t = (S, A, \bar{r}_t, p_t)$ denote the true MDP at time t. Further, let $S := |S|$ and $A := |A|$.

- Assumption: For each $M_t(1 \leq t \leq T)$, the diameter (minimal expected time it takes to get from any state to any other state [1]) is upper bounded by D.

Variation: For time horizon T,

$$V_T^r := \sum_{t=1}^{T-1} \max_{a,s} |\bar{r}_{t+1}(s,a) - \bar{r}_t(s,a)|$$

$$V_T^p := \sum_{t=1}^{T-1} \max_{a,s} |p_{t+1}(s'|s,a) - p_t(s'|s,a)| 1.$$

Goal: Minimize regret

$$R_T := \mathcal{V}^\#_T(s_1) - \sum_{t=1}^{T-1} r_t$$

where $\mathcal{V}^\#_T(s_1)$ is the optimal expected T-step reward achievable by any policy starting in the initial state s_1.

Algorithm 1: Variation-aware UCRL

1. **Input:** $S, A, \delta, \text{variation parameters } \bar{V}^r, \bar{V}^p$.
2. **Initialization:** Set current time step $t := 1$.
3. **for episode $k = 1, \ldots, do**
 4. **Set episode start $t_k := t$**. Let $V_k(s,a) = \text{state-action counts for visits in } k$, and $N_k(s,a) = \text{counts for visits before episode } k$.
 5. **for $s, s_t \in S$ and $a \in A$, compute estimates**

$$\hat{r}_k(s,a) := \frac{\sum_{t=1}^{t_k-1} r_t - 1_{s_t = s, a_t = a, s_{t+1} = s'}}{\max(1, N_k(s,a))},$$

$$\hat{p}_k(s'|s,a) := \frac{\#\{t < t_k : s_t = s, a_t = a, s_{t+1} = s'\}}{\max(1, N_k(s,a))}.$$

Compute policy π_k:

6. **Let M_k be the set of plausible MDPs \bar{M} with rewards $\bar{r}(s,a)$ and transition probabilities $\bar{p}(s'|s,a)$ satisfying**

$$|\bar{r}(s,a) - \hat{r}_k(s,a)| \leq \bar{V}^r + \sqrt{\frac{8 \log(8SA^2T/\delta)}{\max(1, N_k(s,a))}}.$$

$$|\bar{p}(s'|s,a) - \hat{p}_k(s'|s,a)| \leq \bar{V}^p + \sqrt{\frac{8 \log(8SA^2T/\delta)}{\max(1, N_k(s,a))}}.$$

7. **Use extended value iteration [1] to find an optimal policy π_k for an optimistic MDP $\bar{M}_k \in M_k$ such that**

$$\rho(\bar{M}_k, \pi_k) = \max_{M \in M_k} \rho^*(M')$$

where $\rho^*(M')$ is the optimal average reward of M'.

Execute policy π_k:

8. **while $V_k(s, \pi_k(s)) < \max(1, N_k(s, \pi_k(s)))$, do**

 - Choose action $a_t = \pi_k(s_t)$.
 - Obtain reward r_t, and observe s_{t+1}.
 - Set $t = t + 1$.

9. **end while**

Algorithm 2 : Variation-aware UCRL with restarts

1. **Input:** $S, A, \delta, \text{variation parameters } V_T^p$ and V_T^β.
2. **Initialization:** Set current time step $t := 1$.
3. **for phase $i = 1, \ldots, do**
 4. **Perform variation-aware UCRL with confidence parameter $\delta/2r^2$ for $\pi_i := \left\lceil \frac{1}{V_T^p + V_T^\beta} \right\rceil$ steps.**
 5. **Set $\tau = \tau + 1$.
 6. **end for**

Conclusion and Further Directions

- Performance guarantees that are optimal in time and variation demonstrate that our algorithm is a competent solution for the considered problem setting.
- Recently, variational bounds for the (contextual) bandit setting have been derived when the variation is unknown [2]. Achieving such bounds in RL is a worthwhile direction to pursue.

Key references

