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Abstract. Decision-making problems of sequential nature, where de-
cisions made in the past may have an impact on the future, are used
to model many practically important applications. In some real-world
applications, feedback about a decision is delayed and may arrive via
partial rewards that are observed with different delays. Motivated by such
scenarios, we propose a novel problem formulation called multi-armed
bandits with generalized temporally-partitioned rewards. To formalize
how feedback about a decision is partitioned across several time steps, we
introduce β-spread property. We derive a lower bound on the performance
of any uniformly efficient algorithm for the considered problem. Moreover,
we provide an algorithm called TP-UCB-FR-G and prove an upper bound
on its performance measure. In some scenarios, our upper bound improves
upon the state of the art. We provide experimental results validating the
proposed algorithm and our theoretical results.

Keywords: Multi-armed bandits · Delayed rewards · Temporally-partitioned
rewards.

1 Introduction

The classical multi-armed bandit (MAB, or simply bandit) problem is a framework
to model sequential decision-making [5]. In a MAB problem, the learning agent is
faced with a finite set of K decisions or arms, and a decision taken by the agent
is symbolized by pulling an arm. Feedback about the decisions taken is available
to the agent via numerical rewards. Multi-arm bandit literature typically focuses
on scenarios where rewards are assumed to arrive immediately after pulling an
arm. In contrast, the works on delayed-feedback bandits (e.g., [8,10]) assume a
delay between pulling an arm and the observation of its corresponding reward.
In those studies, the reward is assumed to be concentrated in a single round that
is delayed. This setting can be extended by allowing the reward to be partitioned
into partial rewards that are observed with different delays. This type of bandit
problem, known as MAB with Temporally-Partitioned Rewards (TP-MAB), was
introduced by [11].

In the TP-MAB setting, an agent receives subsets of the reward over multiple
rounds. The complete reward of an arm is the sum of the partial rewards
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obtained by pulling the arm. [11] present α-smoothness to characterize the
reward structure. The α-smoothness property states that the maximum reward in
a group of consecutive partial rewards cannot exceed a fraction of the maximum
reward (precise definition given in Definition 2). However, the assumption of
α-smoothness does not fit well if the cumulative reward is not uniformly spread.
In this article, we introduce a more generalized way of formulating how an arm’s
delayed cumulative reward is spread across several rounds.

As a motivating application, consider websites (e.g., Coursera, Khan Academy,
edX) that provide Massive Open Online Courses (MOOCs). Such websites aim
to provide users with useful recommendations for courses. This problem can be
modeled as a TP-MAP problem. A course, which consists of a series of video
lectures, might be thought of as an arm. A course can be recommended to a user
by an agent, which corresponds to pulling an arm. When the student follows a
course, the agent can observe partial rewards (e.g., by checking the watch time
retention). In this setting, α-smoothness rarely captures the actual cumulative
reward distribution. Many students watch the video lectures at the beginning of a
course but never finish the last few lectures, making the spread of partial rewards
non-uniform. As a result, the existing work on delayed-feedback bandits and the
algorithms proposed by [11] may fail to recommend courses that are relevant for
the user. Motivated by such scenarios, we investigate a more generalized way of
formulating the reward structure.

Our Contributions

1. We introduce a novel MAB formulation with a generalized way of describing
how an arm’s delayed cumulative reward is distributed across rounds.

2. We prove a lower bound on the performance measure of any uniformly efficient
algorithm for the considered problem.

3. We devise an algorithm TP-UCB-FR-G and prove an upper bound on its
performance measure. The proven upper bounds are tighter than the state of
the art in some scenarios.

4. We provide experimental results that validate the correctness of our theoretical
results and the effectiveness of our proposed algorithm.

2 Background and Related Work

The non-anonymous delayed feedback bandit problem was considered in [8], where
it is assumed that knowledge of which action resulted in a specific delayed reward
is available. Recently, a variety of delayed-feedback scenarios were studied in
MAB settings different from ours, such as linear and contextual bandits [1,15,13],
non-stationary bandits [14].

The majority of past research on the delayed MAB setting assumes that
the entire reward of an arm is observed at once, either after some bounded
delay [8,10] or after random delays from an unbounded distribution with finite
expectation [7,12]. Our article studies the setting in which the reward for an arm
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is spread over an interval with a finite maximum delay value. This is consistent
with the applications that we aim to model, such as MOOC providers mentioned
in Section 1. To the best of our knowledge, this setting was first analyzed in [11].
They introduced the Multi-Armed Bandit with Temporally-Partitioned Rewards
(TP-MAB) setting. In the TP-MAB setting, a stochastic reward that is received
by pulling an arm is partitioned over partial rewards observed during a finite
number of rounds followed by the pull. In [11], it is assumed that the arm rewards
follow α-smoothness property (precise definition given in Definition 2).

While the study by [11] provides promising results, it is based on the strong
assumption that the α-smoothness property holds. As a result, their proposed
solutions are not suitable for a broader variety of scenarios where rewards are
partitioned non-uniformly. As a remedy, we propose to use general distributions
that can more accurately characterize how the received reward is partitioned.
Consider a scenario (e.g., as described Section 1) in which additional information
is available about how the cumulative reward is spread over the rounds. By
generalizing the reward structure, our approach is able to handle partitioned
rewards in which the maximum reward per round is not partitioned uniformly
across rounds, such as those shown on the right side of Figure 1.

Two novel algorithms, TP-UCB-EW and TP-UCB-FR, leveraging α-smoothness
property are introduced in [11]. The setup of TP-UCB-FR is most suitable for
leveraging assumed distribution in a generalized setting. Subsequently, we use
TP-UCB-FR as a baseline for our proposed algorithm.

3 Problem Formulation

Consider a MAB problem with K arms over a time horizon of T rounds, where
K,T ∈ N. At every round t ∈ {1, 2, . . . , T} an arm from the set of arms
{1, 2, . . . ,K} is pulled. The reward for an arm i is drawn from an unknown
distribution on [0, 1] with mean µi. The performance of an algorithm A after T
time steps is measured using expected regret denoted as RT (A).

Definition 1 (Regret). The regret of an algorithm A after T time steps is
RT (A) :=µ∗T −

∑K
i=1 µi ·E [Ni(T )], where µ∗ :=max1≤i≤K µi and Ni(T ) = num-

ber of times an arm i is selected till time t.

The total reward is temporally partitioned over a set of rounds T ′ = {1, 2, ..., τmax}.
Let xi

t,m(m ∈ T ′) denote the partitioned reward that the learner receives at round
m, after pulling the arm i at round t. It is known to the agent which arm pull
produced this reward. The cumulative reward is completely collected by the
learner after a delay of at most τmax. Each per-round reward xi

t,m is the realiza-

tion of a random variable Xi
t,m with support in [0, X

i

m]. The cumulative reward
collected by the learner from pulling arm i at round t is denoted by rit and it is
the realization of a random variable Ri

t such that Ri
t :=

∑τmax

n=1 Xi
t,n with support

[0, R
i
]. Straightforwardly, we observe that R

i
:=
∑τmax

n=1 X
i

n.
It is shown in [11] that, in practice, per-round rewards for an arm provide

information on the cumulative reward of the arm. They introduce α-smoothness
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Fig. 1: α-smoothness reward distribution for the MOOC setting (left) and a
near-perfect approximation of the reward distribution using β-spread (right)

property (defined in Definition 2) that partitions the rewards such that each
partition corresponds to the sum of a set of consecutive per-round rewards.
Formally, let α ∈ T ′ be such that α is a factor of τmax. The cardinality of each
partition, where we refer to partition as ‘z-group’, is denoted by ϕ := τmax

α with
ϕ ∈ N. We can now define each z-group zit,k, k ∈ {1, 2, ..., α} as the realization of

a random variable Zi
t,k, with support [0, Z

i

α,k], such that for every k:

Zi
t,k :=

t+kϕ−1∑
n=t+(k−1)ϕ

Xi
t,n (1)

Definition 2 (α-smoothness). For α ∈ {1, ..., τmax}, the reward is α-smooth
iff τmax

α ∈ N and for each i ∈ {1, ...,K} and k ∈ {1, 2, ..., α} the random variables

Zi
t,k are independent and s.t. Z

i

α,k = Z
i

α = R
i

α .

The α-smoothness property ensures that all temporally-partitioned rewards
contribute towards bounding the values of future rewards within the same
window. If the α-smoothness holds, then the maximum cumulative reward in
a z-group Z

i

α,k is equal for all z-groups k ∈ {1, 2, ..., α}. Therefore, we can say

that ∀k ∈ {1, 2, ..., α}, Zi

α,k = Z
i

α. The assumption of α-smoothness is unsuitable
for scenarios in which the cumulative reward is not uniformly partitioned across
rounds. The goal of this article is to generalize the spread of the rewards across
z-groups. To that end, one has to eliminate the assumption that every z-group
has an equal probability of attaining a partial reward. To accomplish this, we
replace α-smoothness with β-spread property that allows for modeling scenarios
in which the cumulative reward is distributed non-uniformly across rounds i.e., a
property that allows Z

i

α,k to differ across z-groups.

Our Solution approach: β-spread property

Definition 3 (β-spread). For α ∈ {1, ..., τmax}, the reward is β-smooth if and
only if

1. τmax

α = ϕ with ϕ ∈ N,
2. the reward distribution can be described by a distribution D on a finite integer

domain {1, 2, ..., α} with probability mass function PD(k), and
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3. for each i ∈ {1, ...,K} and k ∈ {1, 2, ..., α} the random variables Zi
t,k are

independent and s.t. Z
i

α,k = PD(k) ·R
i
.

Based on prior information about how the cumulative reward is distributed
over the rounds, the actual reward distribution can be approximated by a
distribution D̂ with corresponding probability mass function PD̂(k), as long as it
adheres to the definition of β-spread. We specify this, because the true reward
distribution might not be known exactly in all cases. However, our solution
approach requires at least some knowledge of the reward distribution.

As an example, consider the MOOC setting described at the end of Section 1.
Consider the case where the watch time retention is considered a partial reward,
and reduces linearly over time. The reward distribution under α-smoothness over
the z-groups is illustrated in Figure 1 (left). Since we expect the partial reward
to reduce linearly over time, the distribution of rewards under α-smoothness is
inappropriate. Rather, we closely approximate the linear reduction with a Beta-
binomial distribution with parameters α = 1 and β = 3 (right), which will result
in lower cumulative regret. In this article, we use Beta-binomial distributions
frequently due to its capability to describe a wide variety of distributions.

4 Lower Bound on Regret

Using the β-spread property, we can derive the following lower bound for a
uniformly efficient policy i.e., any policy with regret in O(T x) with x < 1.

Theorem 1. The regret of any uniformly efficient policy U applied to a TP-MAB
problem with the β-spread property after T time steps is lower bounded as

lim inf
T→+∞

RT (U)

lnT
≥

∑
i:µi<µ∗

2

(α+ 1)

α∑
k=1

kPD(k) ·α
α∑

k=1

(PD(k))
2 ∆i

αKL
(

µi

R̄max
, µ∗

Rmax

)
where ∆i :=µ∗ − µi and KL(p, q) := Kullback-Leibler divergence between

Bernoulli random variables with means p and q [9].

Comparison with the Lower Bound given by [11] By assuming α-smoothness,
the following lower bound for TP-MAB was proved in [11]:

lim inf
T→+∞

RT (U)

lnT
≥

∑
i:µi<µ∗

∆i

αKL
(

µi

R̄max
, µ∗

Rmax

) . (2)

Notice that the difference between the lower bound with the β-spread prop-
erty and the lower bound derived in [11] lies in two factors. The first factor,

2
(α+1)

∑α
k=1 kPD(k) is equal to the normalized expected value of our assumed

reward spread distribution.
∑α

k=1 kPD(k) calculates the expected value for the
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chosen discrete distribution. (α+1)
2 is the expected value when the chosen distribu-

tion is the uniform distribution. Hence, its inverse can be seen as a normalization
term. The second factor, α

∑α
k=1 (PD(k))

2, can be seen as a normalized approxi-
mation of the index of coincidence [6] between rewards. The index of coincidence,∑α

k=1 (PD(k))
2 determines the probability of two reward points being observed in

the same z-group. Its minimal value equals 1
α and occurs when the α-smoothness

property holds (uniform distribution). The value is maximal and equal to 1 if all
rewards fall into one z-group. Multiplying the index of coincidence with α gives
this factor more weight in the lower bound and extends the domain from [ 1α , 1]
to [1, α]. This essentially means that it is ‘harder’ for algorithms to perform well
when the rewards come in bulk, rather than over the course of multiple rounds.
The lower bound given in Theorem 1 resolves to the lower bound given by [11]
in Eq.(2) in case of α-smoothness. However, our lower bound for the considered
problem setting is tighter when 2

(α+1)

∑α
k=1 kPD(k) ·α

∑α
k=1 (PD(k))

2
> 1. This

means that rewards that are expected to be observed late, or rewards that come
all at the same time, contribute negatively to the performance of an algorithm
in the described setting. Rewards that are expected to be observed early or are
more spread out contribute positively.

Proof Sketch for Theorem 1 We start by constructing two MAB problem
instances that call for different behaviors from the algorithm attempting to
solve them. Then, we use the change-of-distribution argument to show that
any uniformly efficient algorithm cannot efficiently distinguish between these
instances. Please consult the extended version of this article given in [3] for the
complete proof of Theorem 1.

5 Proposed Algorithm and Regret Upper Bound

In this section, we propose an algorithm that makes use of the β-spread property
in the TP-MAB setting and prove an upper bound on its regret.

5.1 Proposed Algorithm: TP-UCB-FR-G

Our proposed algorithm TP-UCB-FR-G given below is a non-trivial extension
of TP-UCB-FR [11]. In TP-UCB-FR-G, the most significant modification is the
confidence interval cit−1 which is rigorously built to suit the β-spread property.

As input, the algorithm takes a smoothness constant α ∈ [τmax], a maximum
delay τmax and a probability mass function PD̂. The algorithm uses PD̂ to be
able to give a proper judgment of an arm before all the delayed partial rewards
are observed. This is realized by replacing the not yet received partial rewards
with fictitious realizations, or in other words, the expected estimated rewards.
At round t, the fictitious reward vectors are associated with each arm pulled in
the span H := {t− τmax + 1, ..., t− 1}. These fictitious rewards are denoted by
x̃i
h =

[
x̃i
h,1, . . . , x̃

i
h,τmax

]
with h ∈ H, where x̃i

h,j := xi
h,j , if h+ j ≤ t (the reward
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Algorithm 1 TP-UCB-FR-G
1: Input: α ∈ [τmax], τmax ∈ N∗, PD̂
2: for t ∈ {1, ...,K} do
3: Pull an arm it ← t
4: for t ∈ {K + 1, ..., T} do
5: for i ∈ {1, ...,K} do
6: Compute R̂i

t−1 and cit−1 as in (3) and (4)
7: ui

t−1 ← R̂i
t−1 + cit−1

8: Pull arm it ← z = argmaxi∈[K] u
i
t−1

9: Observe x
ih
h,t−h+1 for h ∈ {t− τmax + 1, ..., t}

has already been seen), and x̃i
h,j = 0, if h + j > t (the reward will be seen in

the future). The corresponding fictitious cumulative reward is r̃ih :=
∑τmax

j=1 x̃i
h,j .

In the initialization phase of the algorithm (lines 2-3), each arm is pulled once.
Later, at each time step t, the upper confidence bounds ui

t−1 are determined for
each arm i by computing the estimated expected reward R̂i

t−1 and confidence
interval cit−1 using Eq. (3) and (4) respectively.

R̂i
t−1 :=

1

Ni(t− 1)

(
t−τmax∑
h=1

rih1{ih=i} +
∑
h∈H

r̃ih1{ih=i}

)
, (3)

cit−1 :=
ϕR̄i

Ni(t− 1)

α∑
k=1

kPD̂(k) + R̄i

√√√√2 ln(t− 1)
∑α

k=1

(
PD̂(k)

)2
Ni(t− 1)

, (4)

where Ni(t− 1) is the number of times arm i has been pulled up to t− 1 and ih
represents the arm that was pulled at time h. The algorithm then pulls the arm
i with the highest upper confidence bound ui

t−1 and observes its rewards.

5.2 Regret Upper Bound of TP-UCB-FR-G

Theorem 2. In the TP-MAB setting with β-spread reward, the regret of TP-UCB-FR-G
after T time steps with PD̂(k) matching PD(k) is upper bounded as

RT (TP-UCB-FR-G)

≤
∑

i:µi<µ∗

4 lnT (R̄i)2
∑α

k=1 (PD(k))
2

∆i
·

(
1 +

√
1 +

∆iϕ
∑α

k=1 kPD(k)

R̄i lnT
∑α

k=1 (PD(k))
2

)

+ 2ϕ

α∑
k=1

kPD(k)
∑

i:µi<µ∗

R̄i +

(
1 +

π2

3

) ∑
i:µi<µ∗

∆i.

Observe that
∑α

k=1 kPD(k) is equal to the expected value of our assumed
reward spread distribution, similar to the factor in the lower bound but not
normalized. The other factor is the index of coincidence

∑α
k=1 (PD(k))

2, which
also occurs in the lower bound but is not weighted for the upper bound.
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Table 1: Parameter values for Beta-Binomial distributions
Distribution name α β Distribution name α β Distribution name α β

extreme_begin 1 100 begin_middle 2 4 end 8 2
very_begin 1 16 middle 5 5 very_end 16 1
begin 2 8 middle_end 4 2

Comparison with the Upper Bound given in [11] Let us compare our
upper bound with the upper bound given in [11]. For the latter bound to hold, the
α estimate given as input to their algorithm has to match the α of the real reward
distribution as well. Note that

∑α
k=1 kPD(k) =

α+1
2 in case of α-smoothness. For

other assumed distributions with
∑α

k=1 kPD(k) <
α+1
2 our upper bound on the

regret is lower. Furthermore, choosing a β-spread distribution as input with a
low mean and a low index of coincidence will result in a better upper bound,
by Theorem 2, compared to choosing D̂ with rewards centered towards the end
(high mean) and not spread out (high index of coincidence).

Proof Sketch of Theorem 2 Here we provide a proof sketch for Theorem 2.
Please refer to the extended version of the article given in [3] for the complete
proof. The approach can be divided into three steps. Firstly, we show that the
probability that an optimal arm is estimated significantly lower than its mean is
bounded by t−4. Secondly, we show the probability of a suboptimal arm being
estimated significantly higher than its mean is bounded by t−4. Finally, we assess
the algorithm’s ability to differentiate between optimal and suboptimal arms.

6 Experimental Results

We compare our proposed algorithm TP-UCB-FR-G with TP-UCB-FR [11], UCB1
[2], and Delayed-UCB1 [8]. We use two experimental settings – a synthetically
generated environment and a real-world playlist recommendation scenario. In
these settings, we inherit learners used in the provided experiments in [11], and
create new learner configurations using TP-UCB-FR-G. As input distributions for
the new learners, we use Beta-Binomial distributions with unique parameter
values for each learner. The Beta-Binomial distribution gives us the opportunity
to model extreme scenarios, which should result in more insightful experimental
results. We observe that other distributions do not grant the flexibility of a Beta-
Binomial distribution, as demonstrated in experiments deferred to the appendix
given with the extended version of this article [3]. In the plots under this section,
we use the notation TP-UCB-FR-G(α, dist_name) to denote a learner for our
algorithm, where dist_name is the name of the Beta-Binomial distribution for
which the exact parameters are shown in Table 1. Further details about the used
Beta-Binomial distributions and experimental settings are given in the appendix
of the extended version of this article [3].
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Fig. 2: Regret against time for Setting 1.2 with τmax = 100 and αest = 50

6.1 Setting 1: Synthetic Environment

The distribution of rewards in this setting are s.t. Zi
t,k ∼ R

i

α Beta[aik, b
i
k] where

Beta is a Beta distribution with a, b s.t. rewards are distributed according to
the spread of the corresponding setting. Again, we model K = 10 arms, an α-
smoothness constant of α = 20 and a maximum reward s.t. convergence to an opti-
mal arm takes longer. That is, R

i
= 100ζi with ζ ∈ {1, 3, 6, 9, 12, 15, 18, 21, 22, 23}.

However, there is a difference in the τmax, αest and the parameters used for the
assumed Beta distribution by the learners. The exact configurations can be found
in the appendix given with the extended version of this article [3]. In general,
there are 8 combinations consisting of 4 configurations with 2 scenarios each. The
configurations differ in τmax and αest, whereas the scenarios differ in distribution
parameters. Generally, there is one where the rewards are observed late after
the pull (Setting 1.1), and one where the results are observed just after the pull
(Setting 1.2). We use learners with the distributions given in Table 1).
Results Let us denote ∆(s1, s2) for s1, s2 ∈ {Setting 1.1, Setting 1.2) as the
absolute difference in cumulative regret between Settings s1 and s2. The pairwise
differences in cumulative regret observed between settings are marginal. As an ex-
ample, ∆(Setting 1.1, Setting 1.2) ≈ 4.8×103 for TP-UCB-FR-G(50, very_end)
which is the highest difference in average regret observed across all compared
settings. Since the regret of TP-UCB-FR-G(50, very_end) averaged over T is
≈ 1.61 × 106, the observed change of ≈ 0.3% is negligible. Furthermore, the
same experiment performed with different values for both τmax and αest seems
to confirm the same marginal change. For example, Setting 1 for τmax = 200 and
αest = 20 results in a maximum change in average regret of only ≈ 0.5%. These
findings indicate that the performance of TP-UCB-FR-G learners in a uniformly
distributed aggregate rewards setting is indistinguishable from that in a non-
uniformly distributed aggregate rewards setting. Therefore, we can state that
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TP-UCB-FR-G(α, begin) delivers a significant performance increase compared to
the learner proposed by [11]. The gain that we observe for the mentioned settings
is as high as ≈ 48.2%. An extensive performance summary is deferred to the
appendix given with the extended version of this article [3].

In Figure 2, the theoretical upper bound of TP-UCB-FR-G as well as the upper
bound of the TP-UCB-FR algorithm is plotted on top of the results for the Setting
1.2. The figure shows that the upper bound proposed in this article is tighter in this
setting. Note that the theoretical upper bounds for TP-UCB-FR-G and TP-UCB-FR
only hold for specific learners that assume the data generating distribution
precisely and that the ‘very end’ learner exceeds the β-spread upper bound. This
shows another reason to estimate the assumed distribution optimistically.

6.2 Setting 2: Spotify Playlists

We evaluate our algorithm on real-world data by addressing the user recommen-
dation problem introduced by [11], using the Spotify dataset [4]. We select the
K = 6 most played playlists as the arms to be recommended. Each time a playlist
i is selected, the corresponding rewards xi

t for the first N = 20 songs are sampled
from the dataset. In this setting, the α-smoothness is α = 20, the maximum
delay τmax = 4N = 80 and the results are averaged over 100 independent runs.

Results In Figure 3, we observe that optimistic learners significantly outper-
form the baseline TP-UCB-FR(20). We focus on TP-UCB-FR-G(20, begin), since it
is by far the best-performing learner. This learner achieves a decrease of ≈ 26.3%
in regret averaged over time horizon T . Table 2 summarizes the performance
gains of TP-UCB-FR-G learners in the Spotify setting.

We also observe that overly optimistic learners perform worse than TP-UCB-FR(20).
However, TP-UCB-FR-G(20, begin) outperforms TP-UCB-FR(20) for larger t, mak-
ing it a better option for playlist recommendations.

7 Concluding Remarks and Future Work

In this paper, we model sequential decision-making problems with delayed feed-
back using a novel formulation called multi-armed bandits with generalized
temporally-partitioned rewards. To generalize delayed reward distributions, we
introduce the β-spread property. We establish a tighter lower bound for the

Table 2: TP-UCB-FR-G learners and their decrease in regret
Learner Regret Decrease
TP-UCB-FR-G(αest = 20) (×104) (%)

extreme_begin 4.40 ≈ −72.5
very_begin 2.40 ≈ 5.9
begin 1.88 ≈ 26.3
begin_middle 2.11 ≈ 17.2
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Fig. 3: Regret against time for begin-oriented learners in the Spotify setting

TP-MAB setting with the β-spread property compared to the TP-MAB setting
with the α-smoothness property. We also introduce the TP-UCB-FR-G algorithm,
which exploits the β-spread property. We demonstrate that in certain scenarios,
the upper bound of this algorithm can be lower than that of the TP-UCB-FR
algorithm, thus surpassing the upper bounds of the classical UCB1 and Delayed-
UCB1 algorithms as well. Finally, we demonstrate that our algorithm outperforms
TP-UCB-FR and other UCB algorithms in diverse experiments using synthetic
and real-world data, achieving a remarkable 26.3% decrease in regret compared
to the state-of-the-art TP-UCB-FR algorithm.

A possible future research direction is to explore removing the restriction of
the β-spread property to discrete probability distributions bounded by a finite
domain of size α. This can enhance the algorithm’s flexibility and broaden its
practical applications. Additionally, a valuable extension involves considering
scenarios where arms are treated as subsets, each assigned distinct α-values
and distributions. Moreover, an intriguing area of exploration involves studying
scenarios where the partitioned reward time span, denoted as τmax, varies.
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