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Abstract

We consider the problem of navigating in a Markov
decision process where extrinsic rewards are either
absent or ignored. In this setting, the objective is to
learn policies to reach all the states that are reach-
able within a given number of steps (in expectation)
from a starting state. We introduce a novel meta-
algorithm which can use any online reinforcement
learning algorithm (with appropriate regret guaran-
tees) as a black-box. Our algorithm demonstrates a
method for transforming the output of online algo-
rithms to a batch setting. We prove an upper bound
on the sample complexity of our algorithm in terms
of the regret bound of the used black-box RL al-
gorithm. Furthermore, we provide experimental re-
sults to validate the effectiveness of our algorithm
and correctness of our theoretical results.

1 Introduction

The ability to efficiently explore the environment remains
key to sample-efficient reinforcement learning (RL). In set-
tings where rewards are absent or sparse, the exploration
must be autonomous, i.e., it cannot be guided by reward
maximization. Furthermore, many works have argued for
a learning approach in which the agent undergoes an ex-
tended developmental period during which reusable skills
are autonomously learned that will be useful for a wide
range of challenges later (e.g., [Kaplan and Oudeyer, 2003;
Weng et al., 2001]). In this article, we focus on learning to
navigate in an unknown environment using such an approach.

Following [Lim and Auer, 2012], we consider a Markov
decision process (MDP) equipped with at most countably
many states and finitely many actions including a reset action
which brings the agent back to some initial state. No extrinsic
rewards are given and the state-transition probabilities are as-
sumed to be stationary. The goal is to minimize the number of
steps required by the agent to learn to reliably navigate to all
reachable states. Since the number of states is unbounded, the
agent is given as input a “radius” L such that it needs to con-
sider all the states that are reachable within L steps (precise
definitions will follow in the next section). This framework is
particularly suitable when the task is to explore a large-scale

environment and the learner only has enough resources to ob-
serve a small part of it by autonomous exploration. In such
scenarios, it is imperative that the learner first solves simpler
intrinsic goal-oriented tasks prescribed by the given number
of steps L. This model could also be used in scenarios where
the goal is to learn the transition operator directly.

1.1 Related Work

Similar problems have been considered in various research
communities under the name of learning using intrinsic moti-
vation/reward, curiosity-driven learning, automatic goal gen-
eration etc. Owing to the space restrictions, a necessarily
incomplete list of these works include [Schmidhuber, 2010;
Singh et al., 2004; Singh et al., 2010; Oudeyer and Ka-
plan, 2007; Baranes and Oudeyer, 2009; Lopes et al., 2012;
Gottlieb et al., 2013; Houthooft et al., 2016; Achiam and
Sastry, 2017; Ostrovski et al., 2017; Pathak et al., 2017,
Haber et al., 2018; Burda et al., 2019; Azar et al., 2019;
Hazan et al., 2019; Florensa et al., 2018]. Recently, [Ecof-
fet et al., 2019; Ecoffet er al., 2020] have proposed a family
of algorithms for exploration when rewards are sparse or de-
ceptive with experimental validation for the performance of
their algorithms. Our approach could be applicable in sce-
narios similar to the ones considered in [Ecoffet et al., 2019;
Ecoffet et al., 2020] who also exploit the same principle em-
ployed in our article — remember promising states and first
return to such states before intentionally exploring.

[Gajane et al., 2019] consider a variant of the problem at
hand where the transition probabilities can change abruptly.
Another line of work is presented by [Tarbouriech er al.,
2020] in which the authors consider a slightly modified goal
(see [Tarbouriech et al., 2020, Definition 5] for more details).
Recently, [Cai er al., 2022] proved a lower bound, based on
the lower bound of UCRL2 [Jaksch et al., 20101, for the con-
sidered problem. Another relevant work is the “reward-free
RL” paradigm introduced by [Jin et al., 2020]: following its
exploration phase, their algorithm is able to compute near-
optimal policies for a collection of given reward functions.
Although related to the problem at hand at a conceptual level,
their approach remains limited to the finite-horizon setting.
While we focus on showing how a general RL algorithm can
be used for the task of exploration, another line of work (e.g.,
[Agarwal et al., 2020]) studies how exploration algorithms
(i.e., policy cover) can be turned into a general RL algorithm.



Our proposed algorithm shares some ideas with “online-to-
batch” conversion methods [Littlestone, 1989; Cesa-Bianchi
et al., 2006]. It has been showed that one can obtain expected
risk bounds for a hypothesis drawn randomly among those
generated from online learning algorithms [Helmbold and
Warmuth, 1995; Freund and Schapire, 1999; Cesa-Bianchi et
al., 1997]. [Shalev-Shwartz, 2012] prove that if we have an
online learning algorithm that is guaranteed to have low re-
gret, then the cost of such a random hypothesis is close to the
optimal cost.

1.2 Main Contribution

We show that any RL algorithm with sublinear regret 7',
a < 1, can be converted into an exploration algorithm. To the
best of our knowledge, our work provides the inaugural algo-
rithm to convert any RL algorithm with sublinear regret into
an exploration algorithm with suitable guarantees on its sam-
ple complexity. This formally verifies the intuition that any
small regret algorithm needs to explore its environment, at
least implicitly. This also shows that RL algorithms that take
advantage of a particular transition structure of an environ-
ment, resulting in improved regret bounds, can be converted
into a corresponding exploration algorithm for this environ-
ment. Our black-box approach of using an RL algorithm as
a subroutine leads to the generality of our proposed solution,
which is one its main strengths. The structure of the proposed
algorithm and its analysis may also serve as a worthy addition
to the literature of online-to-batch conversion methods.

2 Problem Setting

In this section, we present the problem setting first introduced
by [Lim and Auer, 2012] !. We consider a discrete-time
Markov decision process M with no external rewards. We
assume a countable, possibly infinite state space 8 and a fi-
nite action space A. Upon executing an action a in state s,
the environment moves to the next state s’ selected randomly
according to the unknown transition probabilities P(s’|s, a).

The learning agent is expected to solve the autonomous
exploration problem in which the goal is to find a policy for
each state reachable from a starting state. In the following,
we assume (without loss of generality) the starting state sq to
be fixed, and hence it will be omitted from any notation.

Definition 1 (Navigation time). For any policy 7, let T,(s)
be the expected number of steps before reaching s for the first
time when executing policy 7 starting from s.

We further set 7*(s) :== min, 7(s). The learner will be
given a number L > 0 and we may naively demand that it
finds all the states reachable in at most L steps:

Definition 2 (L-reachable states). We let S, denote the set of
all the states reachable in at most L steps i.e.,
S:={se€8:7"(s) < L}.
Since the state space might be infinite, a learner could wan-
der off in some direction or get stuck without being able to re-

turn to the starting state. To exclude this possibility, we make
Assumption 1.

'Readers may consult the list of symbols given in the extended
version of this article to quickly look up the notation.

Assumption 1. In every state s, there is a designated
RESET action available, such that P(sg|s, RESET) = 1.

Definition 3 (Policy on 8’ C 8). We define a policy m on
8’ C 8 to be a policy with w(s) = RESET forany s ¢ 8'.

[Lim and Auer, 2012] show that, in general, efficient learn-
ing to discover all the states in S, is not possible. Rather, we
require the learners to discover only the incrementally reach-
able states, 877 .

Definition 4 (Incrementally reachable states). Let < be some
partial order on 8. The set 87 of states reachable in L steps
with respect to =, is defined inductively as follows:

®* So 68_<,

e ifthereis a policy won {s' € 87 : s’ < s} with7,(s) <
L, then s € 8F.

We define the set 8 of states incrementally reachable in L
steps with respect to some partial order to be 877 = _ 87,
where the union is over all possible partial orders.

As [Lim and Auer, 2012], we are interested in the num-
ber of exploration steps needed to be able to navigate to in-
crementally reachable states from s efficiently. Thus, given
parameters L and ¢, a suitable exploration algorithm will be
able to determine

* aset X D 877, and
* for every s € X, a policy 75 with 7_(s) < (1 +¢)L,

after a certain number of exploration steps dependent on L
and e.

3 Algorithm and Main Result

In this section, we present our proposed algorithm called
META-EXPLORE (given in Algorithm 1) and an upper bound
on its number of exploration steps. The motivation for using a
black-box approach in META-EXPLORE is that it provides the
generality of converting an arbitrary online RL algorithm into
an exploration algorithm. The main idea of META-EXPLORE
is to consider reaching a particular state as a sub-problem that
is solved by using an arbitrary online RL algorithm 2 with
regret guarantees (e.g. UCRL2 from [Jaksch et al., 2010],
REGAL from [Bartlett and Tewari, 2009]). To reach a partic-
ular state, several hypotheses (defined in Section 3.1 below)
are formed using the black-box RL algorithm 2.

META-EXPLORE proceeds in rounds. In each round, it
evaluates a farget state to examine if a (1 + €)L-step pol-
icy for that state can be found, for a given threshold e. At the
end of a particular round, if the algorithm determines (with
high confidence) that a (1 4 €)L-step policy for the chosen
target state has been found, the round is deemed a success
round, otherwise it is called a failure round. At the end of a
successful round, the chosen target state is added to the set
of “known” states K. On the other hand, at the end of a fail-
ure round, the algorithm is said to have rejected the target
state. The algorithm maintains another set U, called the set of
candidate states i.e., states that are potential members of 87°.
Note that, in any round, the algorithm tries to find a policy on
XK at that time in order to reach the target state.



3.1 Major Steps of the Algorithm

Each round consists of three steps — state discovery, choice of
target state, and target state evaluation.

State Discovery

Whenever the algorithm discovers a new known state Syey, it
explores the neighborhood of sy, to add to the set of candi-
date states U. That is, in spey every action a € A is sampled

2
[L log %W times. By definition of a known state, the

algorithm has a (1 4 €) L-step policy 7., t0 reach syey from
the starting state so. To sample any action a € A in Spey,
the algorithm first resets to so and then uses 7, to reach
Snew- Thus, sampling each action once requires on average
(1 +€)L + 1 steps at most. Any neighboring states of syew
which are not already in K are added to U. The algorithm
also keeps hold of the neighboring states discovered by each
known state. Every time a new state becomes known, all the
neighboring states {s} of the previously known states such
that s ¢ X are also added to the set of candidate states U.
Note that a neighboring state is added to U even if it has been
previously rejected by the algorithm. This is done to ensure
that if a target state s, € 87  is erroneously rejected by the
algorithm because the preceding states from some partial or-
der (see Definition 4) were not in K at that time, s, will be
considered as a target state again (this reasoning is explained
in detail in Section 4.5 below).

Choice of Target State

The target state for the current round is chosen arbitrarily
without replacement from the set of candidate states U. The
algorithm stops when U is empty.

Target State Evaluation

This step forms the crux of the algorithm. Consider a round r
with target state 5. Let us define an environmental episode
(or, simply an episode) as a series of time steps beginning at
the initial state sy and ending when § is reached. An online
RL algorithm 2l (with given regret guarantees) is run on the
induced MDP M5 for A environmental episodes, where A is
as defined in Step 3 in Algorithm 1.

Definition 5 (Induced MDP). In the induced MDP Ms, all
the actions in state s suffer loss 0 and lead back to the ini-
tial state. All the states {s|s ¢ KX N\ s # §} are merged into a
single auxiliary state at which only the RESET action is pos-
sible suffering loss 1. Actions in all the other states behave
the same as in the original MDP and suffer loss 1.

Thus, minimizing the total loss in Mj5 is equivalent to min-
imizing the number of steps to reach the target state 5.

At the beginning of each episode, the history of 2 in the
current round is recorded. The recorded history comprises the
state-action-state transition counts from the current round.

Definition 6 (Hypothesis). A hypothesis is a run of the RL
algorithm A from a particular history point. This means that
2 uses the history up to this point to determine its behavior.

The number of time steps spent in episode ¢ are recorded
in7} andletT:=[(1+4 %) L]. Let

A
- Dic Lirr>ry

ﬁr = A ’ (1)

Algorithm 1 META-EXPLORE

Input: A confidence parameter § € (0, 1), an error threshold
€ > 0, L > 1, the initial state sy and an algorithm 2 with a
regret bound of B(# States, # Actions) - T - DP.
Output: A set of reachable states K and corresponding poli-
cies 75 forall s € XK.

Initialization: Initialize s, < Sg, the set of candidate
states U <— {} and the set of known states X < {}.

Set € < min(1,e)
Ineachroundr =1,2,...:

1. State Discovery: If spey ¢ XK, add spey to X and then

2
sample each action a € A in Sy for [L log %—‘

times. Add any neighboring state ¢ X to the set of can-
didate states U. Furthermore, all the neighboring states
{s} of the previously known states such that s ¢ X are
also added to the set of candidate states U. Here, we add
a neighboring state to U even if it has been previously
rejected by the algorithm.

2. Choice of Target State: Stop the algorithm if U is
empty. Otherwise choose an arbitrary candidate state
from U as the target state 5 and U < U \ {5}.

3. Target State Evaluation: Run 2 with confidence pa-
rameter 6, := 9 sanz On the induced MDP
BALIKZ

M; for

4m2|XK|3 AL log

1
A= [B(|X|, A)(1 + 3e)>TFLath-1] ==
9max (4,8/1—«) 1
G/ 108 (5)

environmental episodes. Note that an environmental
episode in M5 begins at the initial state sg and is only
completed when the target state 5 is reached. At the be-
ginning of each environmental episode, store the history
of 2 in the current round r.
If A environmental episodes are not completed in
T, =(1 + 3¢)LA time steps, then the current round r
is stopped with it being considered a failure round; the
state S is said to be rejected by the algorithm; and the
algorithm proceeds to the next round.
Otherwise, at the end of A environmental episodes per-
form the following check. Let I':= [ (1 + 1) L|. Let T

be the number of time steps spent in the environmental
episode ¢. Let

A
i Yrrery

pri= 1
1+5€¢)L + (pr+e
If (UEPOE 0k < (14 8¢)L)

The current round is a success round.
Associate the A history points of the current round
with the state 5.
Set Spew < S.
Else
The state § is said to be rejected by the algorithm
and the current round is deemed a failure round.
Proceed to the next round.




i.e., the fraction of the total A episodes that failed to end in '
time steps. At the end of A environmental episodes, a perfor-
mance check is carried out. If

(1+56)L + (pr+¢)
1 - (ﬁr+€)

then the current round is declared as a success round and a
new round will begin with the target state 5 added to XK. This
performance check is to ensure that the number of times A
failed to reach the target state 5 within I time steps is low.
To prevent expending too many time steps on unpromising
target states, if A environmental episodes are not completed
in 7). (defined in Step 3 in Algorithm 1) time steps, then the
current round is a failure round and a new round will begin.

< (1+8€)L, 2)

3.2 Description of the Output Policy

On the completion of the algorithm, the output is composed
of K and the corresponding A history points for each state
s € K. The output policy 7y for a state s € XK is as follows:

1. Draw a history point (with replacement) from the A his-
tory points associated with s uniformly at random.

2. Start running the algorithm 2( from the history point cho-
sen in the previous step.

3. If s is not reached in I steps, execute the RESET action
and go back to step 1.
3.3 Performance Guarantee
The following theorem constitutes our main result.

Theorem 1. If META-EXPLORE is run with an on-
line RL algorithm A with a regret upper bound of
B(#States, # Actions)-T-D?, then with probability 10,
it

(a) discovers a set of states X O S7’, such that S :=|X|<

—
|8(1+£)L )
1 at+p—1
. ~ 2 4. T—a.1*t 1o
(b) terminates after O (S A [B(SI’I::))(](% 1L) ) ex-
. =

ploration steps 2,

(c) for each s € K, outputs a policy 7s with T (s) < (1 +
€)L,
where D is the diameter as defined by [Jaksch et al., 2010,

Definition 1] and B(#States, # Actions) is some function
of the number of states and the number of actions.

The number of exploration steps stated in the theorem
could be seen as the sample complexity of META-EXPLORE.

3.4 Relation to Existing Work

[Lim and Auer, 2012] introduced this exploration problem
and provided a specific algorithm whereas [Tarbouriech ef al.,
2020] consider a variant of this problem with small branching
(i.e. a small set of successor states for each action).
Disregarding log factors, the sample complexity in [Lim
and Auer, 2012] is SAL?/e3 for L(1 + €) reachability, and

2The notation O ignores logarithmic factors.

in [Tarbouriech et al., 2020] it is SAGL? /€? for L + e reach-
ability, where G is the branching factor. To make the results
comparable, we set € = Le, which gives SAGL? /¢? for [Tar-
bouriech er al., 2020]. Thus, [Tarbouriech et al., 2020] give a
better dependency on € for a small branching factor, but note
that G could be as large as S.

We can instantiate META-EXPLORE with UCRL2 [Jaksch
et al., 2010] which is also the basis for the algorithm in
[Lim and Auer, 2012]. The regret bound for UCRL2 is
O(DSVAT), which gives the sample complexity bound of
O(S*A3L3/e*) for META-EXPLORE when using UCRL2
as a black-box subroutine. Alternatively, we can instan-
tiate META-EXPLORE with UCRL2b [Fruit et al., 2020]
which has the regret bound of OV DSGAT. The sam-
ple complexity bound of META-EXPLORE using UCRL2b is
O(S3GA2L2 /).

As seen above, in terms of L, the sample complexity bound
of META-EXPLORE using UCRL2b is better than that of ei-
ther [Lim and Auer, 2012] or [Tarbouriech et al., 2020]. How-
ever, in terms of S and A, the sample complexity bound for
META-EXPLORE using either UCRL2 or UCRL2b is more
than that of [Lim and Auer, 2012], [Tarbouriech et al., 2020]
and [Cai er al., 2022]. This is mainly caused by additional
exploration due to the use of a black-box algorithm. It is
worthwhile to note that the main strength of our approach
is generality of converting any RL algorithm with sublinear
regret into an exploration algorithm. By the generality of our
conversion, it is reasonable to expect that our meta-algorithm
using black-box RL algorithms can not achieve the sample
complexity of specifically optimized algorithms.

4 Analysis

First, we provide a brief road-map of the proof of Theorem 1.
To prove (a), we prove, with high probability, that none of the
states in S7” is “missed”. To prove (b), it suffices to prove a
high probability upper bound on the total number of rounds,
as the number of time steps in any round is upper-bounded by
(14 3¢)LA. Finally, to prove (c), we show that any state in K
satisfies a bound on the navigation time of its corresponding
output policy.

In the following, we see that the below statements hold
with high probability:

o If there is a neighboring state s that is reachable with

probability at least 1/L from a known state, then s will
be among the candidate states U after state discovery.

* If a state 5§ reachable in L steps (in expectation) using a
policy on X (at the beginning of the round) is selected
as a target state, then 5 it will be added to X at the end
of the round.

o If a state 5 is added to K, then the corresponding output
policy reaches 5 in (1 + €) L steps (in expectation).
While our analysis uses some results from [Lim and Auer,
2012], there are major difficulties resulting from the black-
box RL algorithm: there is no notion of the most promis-
ing state, exploration needs to be organized differently, and
— most importantly — individual runs of the black-box algo-
rithm need to be stitched together to obtain policies for the



reachable states. The stitching requires a completely differ-
ent approach in the analysis.

4.1 Decomposition into Episodes and Hypotheses

In the following, we consider a fixed successful round r. Note
that although some of the values considered subsequently
(such as X, A, or the target state 5) depend on r, this de-
pendence is not reflected in the notation. Fori = 1,... A,
let 3{;_1 be the run of the algorlthm 2 from the zth hlstory
point (i.e. J(;_1 is the policy run in episode ).

Let the cumulative loss of policy 7 after " steps in MDP M
with initial state s be denoted by £L(M, 7, s,T'). Since both
the MDP M; and the starting state sq are fixed for the con-
sidered round r, we use £(m,T) in place of £L(Ms, 7, sg,T)
wherever it is clear from the context.

The value +E[£(m, T)] is the expected average loss up to
step T'. Let the average loss of policy 7 be defined as

1
= lim —=E 7).
v(m):= lim ~EL(m,T)] 3)
Let v* be the optimal average loss. Then as per the (high-
probability) regret bound of 2,

L(A,T) — Tv* < B(#States, #Actions) - T - D"

with probability at least 1 — § where ¢ is the confidence pa-
rameter. Such high-probability regret bounds (e.g., [Jaksch er
al., 2010, Theorem 2]) also contain a log term in §. For ease
of exposition, we choose to ignore the log term in the regret
bound of 2 as it will only contribute a log term in the sam-
ple complexity bound for META-EXPLORE and the claimed
sample complexity bound in Theorem 1 is in terms of O.

Let the cumulative loss of the hypothesis J(;_; during the
environmental episode 7 be £} . Let us also define £ - as the
cumulative loss in episode 7 before reaching either the target
state or " := Rl + %) LW time steps. Then

D LY P
[N M F

4.2 Number of Steps before Reaching either the
Target State or I Time Steps

Let Ty 1 (5) be the random number of steps taken by policy 7
before reaching either the target state 5 or I time steps starting
from the initial state sg.

Fori=1,2,..., A, let us define:

Z; =E[Ts, ,r(5)] — Ll p. )

Let F; be the filtration of history till the end of episode .
Since the policy run in episode 7 is H;_1 and H;_q1 is F;_1-
measurable, E[L] 1|Fi—1] = E[T3,_, r(5)]. Then Z; with
respect to J;_; is a martingale difference sequence.

Let Q, be a random hypothesis drawn from the uniform
distribution over the A hypotheses formed at the start of each
of the A episodes. Then the expected number of steps taken
by Q,. before reaching either the target state s or I' time steps
can be written as

it L7 <T,
otherwise.

“

E[To, r(

A
Z [Ts¢, . r(5)]

> \

13 1
< — L7+ — Z;. 6
Here we use Eq. (4) and the definition of Z; given in Eq. (5).
In Appendix B and C, we prove the upper bounds given in

Eq. (7) and Eq. (8) using the regret bound of subroutine
and the construction of our algorithm META-EXPLORE.

Zzl _ATI/ + B(|J<| A)-T>-DP (7
with probability at least 1 — §,..

A
Z ®)

with probability at least 1 — 5
From Eq. (6), (7) and (8), and using 7. :=

> \

(14 3e)LA,

1
ElTo, r(3)] < xTv" + B(|ﬂ<| A) - TDP + €L
T,
< K + KB(\J<|,A) "T¥DP + el
< (1+ 5¢)L. 9)

The second inequality follows from the application of Lemma
4 while the last inequality is true using Proposition 1. Gath-
ering the error probabilities, Eq. (9) is true with probability
atleast 1 — (20, + 20,.) = 1 — 44,

4.3 Failure Probability to Reach the Target State
in I" Steps

Let p. r be the true probability of failure to reach the target

state 5 in I" steps while following policy 7 from sg.

In Appendix D, we prove the upper bound given in Eq.
(10). In this proof, we show that, for i = 1,2... A,
Yi=psc,_,,r — L{rr>r} is a martingale difference sequence
and then use Azuma-Hoeffding inequlaity [Azuma, 1967;
Hoeffding, 1963].

po,r < prte€ (10)
with probability at least 1 — 4.

4.4 Bound on the Optimum Navigation Time and
the Navigation Time of the Output Policy
The output policy for 5 € K is denoted as ;.

Lemma 1. Let r be a successful round and 5 be the con-
cerned target state, then with probability at least 1 — 20,

7(8) < (1 +¢)L.

Lemma 2. Let r be a successful round and 5 be the con-
cerned target state, then with probability at least 1 — 50,

Txs(5) < (1+¢€)L.

Please see Appendix E for the proof of Lemma 1 and 2. We
prove these lemmas by first forming an equation for 7 _(3)
in terms of E [T}, r(5)]. Then we use the upper bound on
E [T, r(3)] from Eq. (9), Eq. (10) and the construction of
META-EXPLORE, particularly the check given in Eq. (2).



4.5 Bound on the Probability of Erroneously
Rejecting a Target State 5 € 877

Since 87 is unknown, the algorithm needs to make sure that,
with high probability, none of the states in 87" are “missed”.
This is proven by Lemma 12 in [Lim and Auer, 2012] which
states that with high probability, unless all of 87 is known,
at least one of the states in 877 \ X is also in U and that state
is reachable in L steps with a policy on X at that time. Then,
below we prove that if a state 5 € 877, such that it is reachable
in L steps with a policy on K at that time, is selected as the
target state, then with high probability, it becomes known.

Lemma 3. Consider a round r with target state 5 € 87". Let
K be the set of known states at the beginning of round r. If
Im on K such that 7 (3) < L, then the probability of failure
is at most 20,.

Here, we provide a proof-sketch of Lemma 3. Please con-
sult the appendix for the complete proof.
Proof-skecth. First we use Lemma 11 from [Tarbouriech et
al., 2019] to show that if 5 € 87" then 7). < (1 + 3¢)LA with
probability at least 1 — d,.. Then using a similar process as in
the proof of Eq. (10), we show that the performance check in
Eq. (2) is satisfied with probability at least 1 — §,.. O

Let s, € 87 be a state which was erroneously rejected
by the algorithm at the end of round r. Let X’ be the set of
known states at the beginning of round r. Then either one of
the following is true :

1. 37 on X’ such that 7 (s,) < L.
2. P on X’ such that 7 (s,) < L.

The first case is handled by Lemma 3.

Assume that Lemma 3 holds for each round. For the
second case, by the definition of incrementally reachable
states 87" (see Definition 4), there exists a sequence of states
S0, 51, 52,-..,5, and a policy 7 on those states such that
7x(8r) < L. Moreover, each state s; in the sequence is also
incrementally reachable with respect to the states in the se-
quence preceding s;. So for each state s; in the sequence,
there exists a policy on sg,...,S;—1 that can reach s; in L
steps (in expectation). Thus for each state s;, there is an
S € S, ..., ;-1 and an action a with P(s;|s,a) > +. Using
Lemma 17 from [Lim and Auer, 2012], each of these states
would be discovered using state discovery with high proba-
bility. In the sequence s, S1, S2, ..., Sy, there exists a state
s’ which is immediately reachable from sg. When s’ is con-
sidered as the target state, it would be added to K. Simi-
larly, each state s; in the sequence would be added to X if
80,51, ---,5;—1 is in XK at the beginning of the round. If not,
we repeat the same argument. Then, eventually when s,. is
considered as a target state in a round with sg, s1, ..., S, al-
ready in K, it would be added to X at the end of the round.

4.6 Supplementary Lemmas and Propositions

In the following, we provide proof-sketches. Please consult
the appendices for the complete proofs.

Lemma 4. Let v(7) be as defined in Eq. (3). Then,

v(m) =

7x (5)
(8 +1°

The Lemma follows from the definition of v(w) and
Lemma 9 in [Tarbouriech et al., 2019]. The complete proof
for Lemma 4 is given in Appendix F.

Lemma 5. Let M; be an induced MDP with 7*(s) < x for
every state s. Then the diameter of Mz is at most x + 1.

For arbitrary s;, s9, we construct a non-stationary policy
with the expected navigation time from s; to sy of at-most
x + 1. Then we utilize the fact that for a given (fixed) MDP
the optimal average reward is attained by a stationary policy
and cannot be increased by using non-stationary policies. The
complete proof for Lemma 5 is given in Appendix G.

Proposition 1. For any successful round, with probability at
least 1 — 26,,

%B(\JQ,A) T . DP <eL.

Proposition 1 follows from Lemma 1 and Lemma 5. The
complete proof for Proposition 1 is given in Appendix H.

4.7 Proof of Theorem 1
Proof. Here, we prove the three claims stated in Theorem 1.

(a) From Section 4.5, the probability of erroneously reject-
ing a state from 87 is bounded by the sum of the prob-
ability that Lemma 3 does not hold in some round r,
which is at most ) - 24, and the total error probability of
Lemma 12 and Lemma 17 from [Lim and Auer, 2012],
which is 6 /4. From Lemma 1, all the states s € X have
7*(s) < (1 + €)L with probability at least 1 — > 26,.
Hence, S :=|X|< |S(_1>+€)L\.

(b) Exploration steps during state discovery: As ex-
plained in Section 3.1, sampling each action in a new
known state s requires at most (1 + ¢)L + 1 steps
on average. Since each action a € A is sampled

2

[L log %—‘ times for a state s € X, the number
of exploration steps during state discovery due to all S
states in K is O (SAL2 log 7814?5‘2 )

Exploration steps during target state evaluation:
Since each action a € A is sampled in each s € K

2

for [L log %—‘ times, at most [AL log %_‘
states are added to U due to a single known state. As
|X|= S, and the neighbors (which are not in X cur-
rently) of all the previous known states are added to
the set of candidate states every time a new state be-
comes known, the total number of rounds is at-most

(@) ( [S 2ALlog %—‘ ) Thus, the total number of ex-
ploration steps during target state evaluation is at most

= O( {SQAL log

gmax (4,6/(1-a))
" emax (4,1/(1—a))

2
8A§S —‘ -(1+3¢)L

-[B(S,4) - (1+ 3e)th. Laﬂifl] = )



~ 1 2 _1
- O<€max (4,1/(1—a)) -5 A[B(S’ A)} e

« —1
.[ﬂ*‘%)_

(c) AsperLemma 2, forall s € K, output policy 7 satisfies
Tr,(5) < (1 + €)L with probability 1 — " 56,

Collecting the error probabilities, the total probability of fail-
ure is at most % +>°,.96, < 6, where we use the fact that

2 2
o2, % = 7 and at most | K- [AL log %1 states are

added to U due to a single known state. O

5 Experimental Results

In this section, we provide experimental results on simulated
examples to validate the effectiveness of our proposed al-
gorithm and our theoretical results. Note that since this is
the first work providing a general conversion from a regret-
minimizing RL algorithm to an exploration algorithm, there
is no benchmark available.

Below, we describe the problem setting used in our ex-
periments. The MDP is of unbounded state space and has
2 actions — 0 and 1. The states are structured similar to a
tertiary tree with the starting state being the root. On tak-
ing action 0 in a state node, transition to the left child occurs
with very high probability Py ;, transition to the middle child
occurs with very low probability F ,, and transition to the
right child occurs with very low probability P ,. On tak-
ing action 1 in a state node, transition to the left child occurs
with very low probability P; ;, transition to the middle child
occurs with very low probability P; ,,, and transition to the
right child occurs with very high probability P; ,..

We use either UCRL?2 [Jaksch et al., 2010] or UCRL2b
[Fruit er al., 2020] as a black-box subroutine for META-
EXPLORE. The problem settings used in the experiments are
described in Table 1. All the results shown in this article are
averaged over 100 independent runs. Figure 1 shows the em-
pirical sample complexity for META-EXPLORE for problem
setting 1 using 6 = 0.2 and ¢ = 2/3. Figure 2 shows the
empirical sample complexity for META-EXPLORE for prob-
lem setting 2 using 6 = 0.1 and ¢ = 1/3. For each value
of the number of reachable states shown in Figure 1 and 2,
both the instantiations of META-EXPLORE were able to find
appropriate output policies for corresponding reachable states
in at least 1 — ¢ fraction of the runs. Additional experimental
results can be found in Appendix J.

The experimental results show that, using an appropri-
ate RL algorithm as a black-box, our algorithm explores the
state space properly. For both the theoretical upper bound
and the empirical sample complexity, META-EXPLORE us-
ing UCRL2b shows better dependence on L than META-
EXPLORE using UCRL2 which corroborates the dependence

Setting Poi Pom P, P, P Py

Setting 1 0.90 0.050 0.050 0.050 0.050 0.90
Setting2 0.95 0.025 0.025 0.025 0.025 0.95

Table 1: Description of problem settings
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Figure 1: Results for setting 1 with § = 0.2, and e = 2/3
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Figure 2: Results for setting 2 with § = 0.1, and e = 1/3

proven in Theorem 1. We also note, in general, for higher
values of the number of reachable states (i.e., higher values of
L), the empirical sample complexity tends to be much better
than the sample complexity promised by the theoretical upper
bounds. This further provides a testimony for our approach
which is better able to leverage knowledge gained from solv-
ing simpler problems (i.e., smaller values of L) in order to
solve more difficult problems efficiently. It also points to a
way of improving the empirical performance of our approach
in scenarios where solutions for simpler problems are known
and can be provided to the algorithm which will in turn use
them to find solutions for difficult problems in an efficient
manner.

6 Concluding Remarks

We considered the problem of autonomous exploration in an
unknown stationary environment. Our proposed algorithm
can use any online RL algorithm (with appropriate regret
guarantees) as a black-box to solve the relevant sub-tasks. We
proved an upper bound on its sample complexity in terms of
the regret bound of the used black-box RL algorithm. Our
experimental results demonstrate the applicability of our pro-
posed algorithm for the considered problem and the correct-
ness of our theoretical results.

Interesting directions for future work include: 1) extend-
ing the problem definition to include non-stationary environ-
ments, 2) extending the solution approach to solve the multi-
-goal stochastic shortest path problem introduced by [Cai et
al., 2022].
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Nomenclature
v(m) limp_eo %E[L (m,T)]

Tr (5) the random number of steps taken by 7 to reach the
target state s starting from the initial state s

T the number of time steps in episode ¢ of round r

T, the total number of time steps in round r

DPr.,r the true probability of failure to reach the target state
51in I steps while following 75 from sq

A action space

8 state space

v* min, v(7)

F; the filtration of history till the end of episode 7

r [(1+ 1)L

D % i.e., the fraction of the total A episodes
that failed to end in I" time steps

H;—1 the hypothesis corresponding the history point at the

beginning of i** episode fori = 1,..., A

L,() the cumulative loss of 2 in the total T;. steps of round
T

L(M,m,s,T), L(m,T) the camulative loss of policy 7 after
T steps in MDP M with initial state s

L7 the cumulative loss in episode ¢ before reaching ei-
ther the the target state or I' time steps
L7 the cumulative loss of the hypothesis J(;_; during

the environmental episode %

Y P340 — Lyrrsry
A the number of environmental episodes in a single
round

T the optimal policy to reach target state 5§ from the

starting state sq

B(#States, # Actions) - T - D? regret bound of the used
black box Rl algorithm

87 set of incrementally reachable states
St Sp={se€8:7%(s) <L}

*
5



T, r(3) the random number of steps taken by 7 before reach-
ing either the target state 5 or I' time steps starting
from the initial state s

Q, a random hypothesis drawn from the uniform distri-
bution over the A hypotheses formed at the start of
each of the A episodes

Z; ]E[T%i—lyr(g)] - ’C’Z,F

D diameter of the MDP (see Definition 1 in [Jaksch et
al., 2010])

A Preliminaries

Before proceeding further, we state some preliminary results
which shall be useful in analyzing the algorithm.

Lemma 6. (Azuma-Hoeffding inequality) [Azuma, 1967;
Hoeffding, 1963] Let Z1,Z5, ... be a martingale (or super-
martingale) difference sequence with respect to filtration F
satisfying Z; <y for 1 < i < n. Then we have

Pas| <on{zer st

i=1
Lemma 7. (Freedman’s inequality) [Freedman, 1975] Let
Z1,Z5,... be a martingale (or supermartingale) differ-
ence sequence with respect to filtration F satisfying Z; <
y for 1 < i < n.Then we have

i=1 i=1

Proposition 2. For e € (0,0.4],
e <2F2 + §F6L) < 16L2.
Proof. We have

2 2
€2 (2r2 + 3F6L> =% + gre?’L

=2 ([1+7] L)2

2
+3{ WLe?’L

<2 (214 7)1)

+ (¢ + %)L

OJL\D

=8(e+1)°L* + (e +€) L?

3
2

= (8(6 +1)% + 3 (8 + 62)> L?

< 16L2.

The last inequality is true as (8(e + 1)% + 2(e® + €%)) < 16
for e € (0,0.4]. O

n n ’
, —Z
P> 7> 2> BZ2F ) < Fv] =< exp{mzyz/?,}'

B Upper Bound on the First Term of Eq. (6)

Let £, () be the cumulative loss of 2 in the total T, steps of
round 7. Then,

—T.v"]

> \

A 1
l B(|X|,A) - T . D
A ‘s

with probability at least 1 — d,.. Here we use the regret bound
of 2. Rearranging the terms,

A
Z TV + B(\ﬂq A)-T>-DP (1)

> \

with probability at least 1 — §,..

C Upper Bound on the Second Term of Eq.
(6)

Since the range of both E[Ty, , r(5)] and £] 1 is between 0

and ', for1 <i <A

r
|Z|<T and E[Z}|F; 1] <T > P[Z
t=1

=t]-t<T?%

From Eq. (13), it follows that the second term of Eq. (6)
ie. L% Z, is bounded as

A
Z (12)

with probability at least 1 — 2J,.

> \

Then, application of Lemma 7 with z = AeL, y = I" and
k = AT'? yields

A
_A2e2[2
P ;ZiZAeL SGXP{QAF2+§F~AEL}
log( >L2
<e —_—
=P 21“2+§1“6L
— 5. (13)

In the above, we use that for e € (0, 3], A > £ log ( ) and

2I'2 + 2TeL < 18 L? following Proposition 2 It is ensured
by the 1n1t1ahzat10n procedure in Algorithm 1 that € € (O, 8]

Using Eq. (13), the second term of Eq. (6) can be bounded
as follows with probability at least 1 — 4.,

A
% > Zi <eL. (14)
i=1



D Upper Bound on Failure Probability to
Reach the Target State in " steps
Fori=1,2..., A, let us define

Yi=ps, .0 — Lirr>ry- (15)

The policy being run in episode ¢ is J(;_ and I{;_; is F;_1-
measurable. It follows that the event {7} > I'} indicates the
failure of J(;_; to reach the target state 5 in I" steps starting
from so. Then by definition, ps, , r = E[l{7r>ry|Fi-1].
Therefore, the process Y; with respect to F;_; is a martingale
difference sequence. Note that |Y;|< 1 for 1 < ¢ < A. Then
using Lemma 6 with z = €A and y = 1 yields

22
<o l<s. a6
254 1

i=1

A

ZYizd\

i=1

P

Here we use that A > 2 log( ) fore € (0,%]. Itis

ensured by the 1n1t1ahzat10n procedure in Algorithm 1 thate €
(0, £]. Then we have the following bound on the probability
with which a policy chosen uniformly at random from the A
hypotheses fails to reach the target state in I" steps.

1S 143 1A
po.r =y ;pﬂﬁ,,l,r = K;ﬂ{ﬂﬂ} + K;Yi

<prte a7

with probability at least 1 — §,.. The last inequality is true
using Eq. (16) and the definition of p, in Eq. (1).

E Upper Bound on the Optimum Navigation
Time and the Navigation Time of the
Output Policy

Let T, o0(8) be the random number of steps taken by the
policy 75 to reach the target state s starting from the initial
state sqo. Then, by definition of T_ r(5),

T
=3 Pl
t=0

Since the output policy 7z for target state 5 resets to sg
every time it fails to reach the target state after I' steps, we
can write the following recurrence relation for any ¢ > 0:

PlTr. 00(5) =T +1+t] =pr,r - P[Tr,,00(5) =t]. (19)

For the output policy 75 of a target state 5, we have,

§)=t]-t + pr.r-T (18)

TTFE (‘§>

= P[Tm, (5) J-t+ Z ]P[Tm, (85)=t]-t
t=0 t=D+1
r

:ZP[TTF oo(g):t] t
t=0

+ iP[Tﬂs,oo(f)=F+1+t]-(r+1+t)
t=0

EF:IP =t]-t

t

+ 3 e Pl 00(3) =] - (D +1+1)
t=0

I
Mﬁ

Py, (3 =tt

prr&,l—‘ r.

t=0

)
+ Zpﬂ'g,r ' ]P)[Tﬂ'g,oo(g) =

~
Il
<

P[Tr, 00 (5) = 1]

- (1+1)

I
Z 71'5,00 —t]t+p7—|—571" F+pﬂ's; (1+T7T5(§))
=0

= E [Tﬂ'g,r( )] + pﬂ'g,r(l + 7-7\'5(‘§>)'
In the above, the fourth equality is due to Eq. (19) and the
last equality is due to Eq. (18). Rearranging the terms,
ET:. r(s -
e (5) = [Trix(5)] + Pror
l 1 - pﬂ'g,F

Lemma 1. Let r be a successful round and 5 be the con-
cerned target state, then with probability at least 1 — 20,

(20)

7°(5) < (1 +¢)L.
Proof. Fori=1,2,..., A, let us define,
X; =FE[min (7},T)] — min (7],T). (21)
The application of Lemma 6 with z = AeL, y = T yields
A
P |‘ZX7 > Ael| < eXp{QZA;\gL;Q}
i=1 i=1

_A2e212
<expy————5 ¢ <0
8A (14 1)"L?

In the above, we use A > S(EH) log ( ) fore € (0, 5]. It

is ensured by the 1n1t1ahzat10n procedure in Algorithm 1 that
€ € (0, £]. Then we have, with probability 1 — §,,

A
Z min (7] ,T

A
1
<5 ;min (T7,T) + €L

< (1+4¢)L. (22)

:> \

(14 36)LA. Note that by construction of the output pol-
icy, & fo 1 E[min (T7,T')] = E[T,, r(5)]. Then using
Eq. (20), Eq. (22) and the definition ofT (3), we have
* (= ( +4€)L+p7r—.l"
7T(5) < =
(5) < —5— P

Here, we use that for a successful round r, Z;\=1 7 <




< (1+4e)L + (pr+e)
N I - (ﬁr"‘e)
< (1+8¢)L.

In the above, the second inequality is due to Eq. (10). This
ensures that the optimum navigation time 7*(5) is bounded by

(1 + €)L using the fact that e + =29 iy the initialization
step of the algorithm. Collecting the error probabilities, the
total probability of failure is at most d,. + &, = 29,.. O

Lemma 2. Let r be a successful round and s be the con-
cerned target state, then with probability at least 1 — 56,
T (8) < (1+4¢€)L.

Proof. From Eq. (20), Eq. (9), Eq. (10) and using the check
given in (2), we have
E[T‘ﬂ'ﬁ,r(g)] + p7T§7F

1 - Prs,T
< (1+5e)L + (pr+e)
N 1 - (ﬁr +€)
< (1+8¢)L (23)

T7T§(§) -

with probability at least 1 — 59,.. This ensures that the ex-
pected number of steps taken by the output policy 75 to reach
the target state 5 is at most (1 + €)L, using the fact that
€ % in the initialization step of the algorithm. O

F Proof of Lemma 4
Proof. We have

T
1 _
v(r) = lim E, th_lT{sﬁés}]

T-F 14,
_ 1im Eﬂ— Zt:l {Sts}‘|
T—o00 T
T
P
—1— lim Eﬂ Zt:l {St—s}]
T— o0 T
B 1
o 1+ 7(5)
_ Tx (5)
() + 17
In the above, the second to last equality uses lemma 9 from
[Tarbouriech et al., 2019]. O

G Proof of Lemma 5
Proof. Recall that diameter D for MDP Mj is defined as

D= Sr?ji 7TnEanS Tr(81 = $2)
where IT° is the set of stationary policies and 7 (s1 — s2) is
the expected navigation time from s; to sy using policy 7.
Consider an arbitrary s; and ss. Since 7*(sg — s2) <
x, there exists a policy 7, such that 7. (so = $2) < .
To reach s from s, construct the following non-stationary

policy. Starting from s, select RESET to reach sg, then act
according to the policy 73, . As this policy demonstrates, the
minimum expected hitting time from s; to s using a non-
stationary policy is at most 1 4- z. Let 7™ the non-stationary
policy which minimizes the expected hitting time to sy with
Tans (81 — 82) < 1+ .

However, according to tarbouriech2019noregret[Lemma
9], #™* is also the policy which maximizes the long-term av-
erage reward. For a given (fixed) MDP the optimal average
reward is attained by a stationary policy and cannot be in-
creased by using non-stationary policies. Hence there exists
a stationary policy 7 € IT¥ which achieves the same average
reward as 7"°. By extension, 7.(s1 — S2) = Tyns($1 —
$2) < 14 2 and D :=max,, 45, min, cps 7(s1 — s2) <
1+ . O

H Proof of Proposition 1

Proof. As the current round r is successful, Lemma 1 is ap-
plicable and therefore 7*(5) < (1 + €)L with probability
1 — 26,. Then following Lemma 5, D < (1 + ¢)L + 1.
Substituting the value of D and T, :=(1 + 3¢) LA, we have

1 1
T B(X|.4)- T3 DP < TB(X.4)- (1 + 3e)atBLoth,
Using
1
A= [B(|K|, A)(1 4 3e)>TFLath-1] ==
gmax (4,8/1-a) 1
’ emax (4,1/1-a) ' lOg <67)

in the above inequality, it follows that

1
1 B(X], 4)- T DP <eL

with probability at least 1 — 24, O

I Proof of Lemma 3

Proof. Using the upper bound on the number of time steps
to complete A episodes as given in Lemma 11 from [Tar-
bouriech er al., 2019] and substituting the value of A from
Algorithm 1, T,. < (1+43¢) LA with probability at least 1—§,..

Considering the martingale difference sequence as in (15)
and following the same procedure as in Section 4.3 yields
pr < 1 — € with probability at most §,.. Then

. (1+5e)L+1

P2 l—e—

b=t e T 8L + 1
with probability at least 1 — §,. Rearranging the above, we
get the performance check given in Eq. (2). O

J Additional Experimental Results

See Section 5 and Table 2 for a description of the problem
settings. Figure 3 shows the empirical sample complexity for
META-EXPLORE for problem setting 1 using 6 = 0.1 and
e = 1/3. Figure 4 shows the empirical sample complexity
for META-EXPLORE for problem setting 2 using § = 0.2 and
e = 2/3. Figure 5 shows the empirical sample complexity
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Figure 3: Results for setting 1 with d = 0.1,and e = 1/3
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Figure 5: Results for setting 3 with 6 = 0.1, and e = 2/3
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Figure 6: Results for setting 3 with 6 = 0.15, and e = 1/2

Setting FPoy  Pom P P, P Py

5

Setting 1 0.90 0.050 0.050 0.050 0.050 0.90
Setting2  0.95 0.025 0.025 0.025 0.025 0.95
Setting3 0.92 0.040 0.040 0.040 0.040 0.92

Table 2: Description of problem settings

for META-EXPLORE for problem setting 3 using 6 = 0.1 and
€ = 2/3. Figure 6 shows the empirical sample complexity for
META-EXPLORE for problem setting 3 using 6 = 0.15 and
e=1/2.

Similar to the results shown in Section 5, the empirical
sample complexities stay within the respective upper bounds.
Furthermore, these results also show better dependence on
L using UCRL2b [Fruit et al., 2020] as opposed to using
UCRL2 [Jaksch et al., 2010] which corroborates the depen-
dence proved in the theoretical upper bound on the sample
complexity.
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