#1666 : Autonomous Exploration for Navigating in MDPs using Blackbox RL Algorithms

Pratik Gajane¹, Peter Auer² and Ronald Ortner²

¹Eindhoven University of Technology ²Montanuniversität Leoben

FUF Der Wissenschaftsfonds.

Pratik Gajane, Peter Auer and Ronald Ortner

Introduction	The META-EXPLORE Algorithm	Output and Performance Guarantees	Concluding Remarks	References	Appendice
•00	0000000	00	0		0000000

Motivation

- Exploration in reinforcement learning(RL) is a hard problem.
- (Near)-optimal RL algorithms exist for regret minimization in various settings.
- Our work :

Introduction	The META-EXPLORE Algorithm	Output and Performance Guarantees	Concluding Remarks	References	Appendice
000	0000000	00	0		0000000

Problem Setting

- Markov Decision Process (MDP) with
 - No external rewards and unknown transition probabilities,
 - Countable (possibly infinite) state space S,
 - Finite action space with A #actions, and
 - Starting state so.
- Assumption : In every state, RESET action available which leads back to s₀.
- Input : $L \ge 1$.

Goal : Find a policy for every state reachable from the starting state s_0 in *L* steps.

Introduction	The META-EXPLORE Algorithm	Output and Performance Guarantees	Concluding Remarks	References	Appendice
000	00000000	00	0		0000000

Reachable States

Navigation time $_{\pi}(s)$

Expected #steps before reaching state *s* for the first time following policy π from the starting state *s*₀.

Reachable states S_L

 $S_L := \{ s \in S : \min_{\pi} (\text{Navigation time}_{\pi}(s)) \leq L \}.$

- Incrementally reachable states S[→]_L := A subset of S_L that allows for incremental discovery.
- Goal : Find a policy $\forall s \in S_L^{\rightarrow}$ with navigation time $\leq (1 + \epsilon)L$.

Our proposed algorithm : META-EXPLORE

Central idea: Use an arbitrary online RL algorithm \mathfrak{A} to find a suitable navigation policy for a state.

- META-EXPLORE proceeds in *rounds*. In each round, it evaluates a *target state*.
- Target states are chosen from the set of candidate states.
- If $(1 + \epsilon)L$ -step policy found for the target state , Successful round and target state becomes *known*.
 - Else

Failure round.

Our proposed algorithm : META-EXPLORE

META-EXPLORE

• Initialization: Initialize

Set of candidate states $\mathcal{U} \leftarrow \{\}$ Set of known states $\mathcal{K} \leftarrow \{s_0\}$

 In each round r = 1,2,... State Discovery Choice of Target State Target State Evaluation

META-EXPLORE: State Discovery

State Discovery

- Exploring the neighborhood of known states to add to the set of candidate states U.
- In a newly known state, every action is sampled $\tilde{O}(L)$ times.
- Any newly discovered states and the neighboring states of previously known states are added to the set of candidate states U.

Introduction	The META-EXPLORE Algorithm	Output and Performance Guarantees	Concluding Remarks	References	Appendice
000	0000000	00	0		0000000

META-EXPLORE

META-EXPLORE

• Initialization: Initialize

Set of candidate states $\mathcal{U} \leftarrow \{\}$ Set of known states $\mathcal{K} \leftarrow \{s_0\}$

 In each round r = 1, 2, ... State Discovery Choice of Target State Target State Evaluation

META-EXPLORE : Choice of Target State

Choice of Target State

- Chosen arbitrarily from the set of candidate states.
- Algorithm stops when the set of candidate states is empty.

Introduction	The META-EXPLORE Algorithm	Output and Performance Guarantees	Concluding Remarks	References	Appendice
000	00000000	00	0		0000000

META-EXPLORE

META-EXPLORE

Initialization: Initialize

Set of candidate states $\mathcal{U} \leftarrow \{\}$ Set of known states $\mathcal{K} \leftarrow \{s_0\}$

 In each round r = 1, 2, ... State Discovery Choice of Target State Target State Evaluation

META-EXPLORE : Target State Evaluation

META-EXPLORE: Target State Evaluation

- What do we need to use an online RL algorithm 2? An MDP such that regret minimization leads to time-effective navigating to the target state.
- Induced MDP : In the induced MDP M₃ for target state s, the learner

has loss 0 in \overline{s} , and suffers loss 1 in every other state.

META-EXPLORE : Target State Evaluation

META-EXPLORE : Target State Evaluation

- Run \mathfrak{A} on $\mathcal{M}_{\overline{s}}$ till target \overline{s} is reached f(regret(\mathfrak{A}), L, ϵ) times.
- Every time s is reached, record history of 𝔄 in the current round.
- History \equiv state-action-reward-next state transitions.
- A performance check (based on average #steps to reach \bar{s}) decides if a round is successful.
- At the end of a successful round,

 $\mathcal{K} = \mathcal{K} + \bar{s}$ and all associated history points are added to the output for \bar{s} .

Navigation Policy for Known States

For each known state $s \in \mathcal{K}$,

- $h \stackrel{\text{uniform}}{\sim}$ history points associated with *s*.
- **2** Run \mathfrak{A} from the history point **h**.
- If s is not reached in $\approx \frac{L}{\epsilon}$ steps, RESET and go to step 1.

Performance Guarantees

Theorem

If META-EXPLORE is run with an online RL algorithm \mathfrak{A} , then with high probability, it

- discovers a set of states $\mathcal{K} \supseteq S_L^{\rightarrow}$,
- has a sample complexity better than previous work in terms of L,
- So for each $s \in \mathcal{K}$, outputs a policy with navigation time $\leq (1 + \epsilon)L$.

Concluding Remarks

- Conversion of RL algorithms into exploration algorithms with an upper bound on sample complexity.
- Not included in this presentation : Experimental results.

Thank You.

Scan the following to see the paper

See you at the poster D1.

Introduction	The META-EXPLORE Algorithm	Output and Performance Guarantees	Concluding Remarks	References	Appendice
000	00000000	00	0		0000000

References

[LA12] Shiau Hong Lim and Peter Auer. "Autonomous Exploration For Navigating In MDPs". In: *Proceedings of the 25th Annual Conference on Learning Theory*. 2012, pp. 40.1–40.24.

[TPVL20] Jean Tarbouriech et al. "Improved Sample Complexity for Incremental Autonomous Exploration in MDPs". In: Advances in Neural Information Processing Systems. 2020, pp. 11273–11284.

Diameter of an MDP

Consider the stochastic process defined by a stationary policy $\pi : S \to A$ operating on an MDP M with initial state s_0 . Let $T(s'|M, \pi, s)$ be the random variable for the first time step in which state s' is reached in this process. Then the diameter of M is defined as

$$D(M) := \max_{\boldsymbol{s} \neq \boldsymbol{s}'} \min_{\boldsymbol{\pi}: \mathcal{S} \to \mathcal{A}} \mathbb{E} \left[T(\boldsymbol{s}' | \boldsymbol{M}, \boldsymbol{\pi}, \boldsymbol{s}) \right]$$

Incrementally Reachable States : Definition

Definition (Incrementally reachable states)

Let \prec be some partial order on S. The set S_L^{\prec} of states reachable in L steps with respect to \prec , is defined inductively as follows:

- $s_0 \in \mathcal{S}_L^{\prec}$,
- if there is a policy π on $\{s' \in S_L^{\prec} : s' \prec s\}$ with navigation time $\pi(s) \leq L$, then $s \in S_L^{\prec}$.

We define the set S_L^{\rightarrow} of states incrementally reachable in *L* steps with respect to some partial order to be $S_L^{\rightarrow} := \bigcup_{\prec} S_L^{\prec}$, where the union is over all possible partial orders.

Incrementally Reachable States : Illustration

- Two environments where the starting state s_0 is shown in white.
- On the left, each transition is deterministic and is depicted with an edge.
- On the right, each transition from *s*₀ to the first layer is equiprobable, and the rest of the transitions are deterministic.
- For L = 3, states belonging to S_L are shown in pink.
- On the left, $S_L^{\rightarrow} = S_L$. On the right, $S_L^{\rightarrow} = \{s_o\} \neq S_L$.

Induced MDP: Definition

In the induced MDP $\mathcal{M}_{\bar{s}}$ for target state \bar{s} ,

- all the actions in state s have loss 0 and lead back to s₀
- all the states {s|s ∉ K ∧ s ≠ s̄} merged into an auxiliary state at which only RESET is possible suffering loss 1,
- actions in all the other states behave the same as in the original MDP and suffer loss 1.

META-EXPLORE : Target State Evaluation

META-EXPLORE : Target State Evaluation

- Run \mathfrak{A} on $\mathcal{M}_{\overline{s}}$ for #episodes where $\#episodes = f(regret(\mathfrak{A}), L, \epsilon)$.
- Episode := begins at s_0 and ends only when \overline{s} is reached.
- At the end of an episode, record *history* of \mathfrak{A} in the current round.
- History = state-action-reward-next state transitions.
- A performance check (based on #steps for episode completion) decides if a round is successful.
- At the end of a successful round,

 K = *K* + *s* and all associated history points are added to the output for *s*.

Performance Guarantees

Theorem

If META-EXPLORE is run with an online RL algorithm a with a regret upper bound of $B(\#States, \#Actions) \cdot T^{\alpha} \cdot D^{\beta}$, then with prob. $1 - \delta$, it

1 discovers a set of states $\mathcal{K} \supseteq S_{I}^{\rightarrow}$,

2 terminates after

$$\tilde{O}\left(\frac{S^2A \cdot [B(S,A)]^{\frac{1}{1-\alpha}} \cdot L^{2+\frac{\alpha+\beta-1}{1-\alpha}}}{\epsilon^{\max\left(4,\frac{1}{1-\alpha}\right)}}\right)$$

exploration steps, where $S := |\mathcal{K}| \le |\mathcal{S}_{(1+\epsilon)I}^{\rightarrow}|$.

3 for each $s \in \mathcal{K}$, outputs a policy with navigation time $\leq (1 + \epsilon)L$.

Introduction The META-EXPLORE Algorithm Output and Performance Guarantees Ocncluding Remarks References Ocococo

Relation to Existing Work

UCBEXPLORE [LA12] DISCO [TPVL20] META-EXPLORE using UCRL2b $egin{array}{l} ilde{O}(SAL^3/\epsilon^3) \ ilde{O}(SAGL^3/\epsilon^2) \ ilde{O}(S^3GA^2L^2/\epsilon^4) \end{array}$