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Formalization



Classical Markov Decision Process (MDP)

e MDP : standard model for problems in decision making with
uncertainty like RL.

e Classical MDP M(S, A, p, F) with state space S, action space A,
transition probability p, reward function F.

e Learner selects action a in state s attime t=1,..., T

e learner receives reward r; drawn from dist. with mean 7(s, a).
e environment transitions into next state s’ € S according to

p(s’ | s, a).
e In classical MDPs, stochastic state-transition dynamics and reward
functions remain fixed.



Switching-MDP

=» Our setting (Switching-MDP): transition dynamics and reward
functions change a certain number of times (abrupt changes)

e Switching-MDP M = (S = (Mp,..., M), c = (c1,...,¢))

e At t < ¢, Mis in its initial configuration My(S, A, po, Fo).

e At time step ¢; <t < ¢i+1, M is in configuration M;(S, A, p;, F;).
=» Goal of algorithm 2l starting from an initial state s

Minimize regret A(M, 20, s, T) = 3] | (pia(t) — re)

pm(t) == Optimal average reward of the active MDP.



Proposed algorithm: SW-UCRL




Proposed algorithm: SW-UCRL

o Key idea: Modify UCRL2 to use only the last W samples for
computing the estimates.

e Input: A confidence parameter ¢ € (0,1) and window size W.

e Initialization: Set t := 1, and observe the initial state s;.



SW-UCRL: Episode Initialization

1. Set the start time of episode k, t; := t.
2. Forall (s,a) in S x A, set v(s,a) :=0

Ny (s,a) =#{tk —W <7 <ty:s, =s,a, = a}
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4. Compute estimates

o L Rk(s7 a)

fic(s, 2) = max{1, Nk(s, a)}
. Pi(s,a,s’
pi(s]s,2) = LA 27)

max{1, Ni(s, a)} 2



SW-UCRL: Policy Computation

1. Let My be the set of all MDPs with state space S and action space
A, and with transition probabilities p (+|s, a) close to px (+|s, a), and
rewards 7(s, a) € [0,1] close to 7 (s, a), that is,

= N og(2S. &
|r(s, a) — Tk (S’ a) | S 2Zn|a§~g,l\/j\:€s/,a))} and (1)

= A 145 log(2At, /6
ptis) -pctina ], < VisEREs - @

2. Use extended value iteration to find a policy near optimal policy 7«
and an optimistic MDP M, € M



SW-UCRL: Policy Execution

Episode stopping criterion: number of occurrences of any (s, a) in the
episode (vk(s, a)) = number of occurrences of same (s, a) in W
observations before episode start(N(s, a))

While v (s, Tk (se)) < max{1, Ni(s¢, 7k(st))} do

e Choose action a; = 7x(s;), obtain reward r.

e Observe next state s;.1.

Update vi (s, ar) := vi(st, ar) + 1.
Set t :=t+ 1.



Performance Bounds

Theorem (Regret Upper Bound)

Given a switching-MDP with | changes, the regret of SW-UCRL using
window size W is upper-bounded with probability at least 1 — 6 by

T / T

where D = max of diameters of constituent MDPs.

e Optimal value of W:

2/3
W — (16}53 DS, | Alog (;))



Performance Bounds

Corollary (Regert Upper Bound using W*)

Given a switching-MDP with | changes, the regret of SW-UCRL using

2/3
W = <@ TDS,/Alog (%)) is upper-bounded with probability at
least 1 — 0 by

1/3
38.94 - [\/3T2/3p2/352/3 (A log (%)) .



Performance Bounds

Corollary (Regert Upper Bound using W*)
Given a switching-MDP with | changes, the regret of SW-UCRL using

2/3
W = <@ TDS,/Alog (%)) is upper-bounded with probability at
least 1 — 0 by

1/3
38.94 - [\/3T2/3p2/352/3 (A log (%)) .

Contribution: Improves upon the regret bound for

UcRL2 with restarts (Jaksch et al.(2010) [2]) in
terms of D, S and A.




Performance Bounds

Corollary (Sample Complexity Bound)
Given a switching-MDP problem with | changes, the average per-step
regret of SW-UCRL using W* is at most € with probability at least
1 — 0 after any T steps with

ID2S2A 94)°ID2S?A
T >2-(3894)° f Iog<(389 )35 > )
€ €



Experiments
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(a) Average regret plot for 2 changes (b) Average regret plot for 4 changes

Figure 1: Average regret plots for switching-MDPs

Switching-MDPs with S =5, A= 3, and T = 100000.

| changes happen at every [%] time steps.

e SW-UCRL with optimum window size W*

e For comparison : UCRL2 with restarts (UCRL2-R) and UCRL2 with
restarts after every W* time steps (UCRL2-RW)
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Summary and Future Directions




Summary and Future Directions

e SW-UCRL: a competent solution for regret-minimization on
switching-MDPS.

Variation-dependent regret bound?

Link between allowable variation in rewards and transition

probabilities and minimal achievable regret? (like Besbes et al.
(2014) [1] for bandits)

Refine episode-stopping criterion?

12



Thank you all.
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SW-UCRL: Policy computation

1. Let My be the set of all MDPs with state space S and action space
A, and with transition probabilities p (-|s, a) close to pi (+|s, a), and
rewards 7(s, a) € [0, 1] close to F (s, a), that is,

= ~ 7 log(2SAt /5
|F(s,a) — P (s,a) | < m and  (3)

~ A~ 145 log(2At, /)
Hp ('|5’a) — Pk (.|S7 a) Hl = max{lg,Nk(sk,a)} : (4)

2. Use extended value iteration to find a policy near optimal policy 7«
and an optimistic MDP l\;lk € My such that

“ . o~ / /
Pic = min p(Mi, T, s) = max (M@, ) =

%‘H
x
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