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ABSTRACT

This study investigates gender fairness in personalized pain care recommendations using machine
learning algorithms. Leveraging a contextual bandits framework, personalized recommendations are
formulated and evaluated using LinUCB algorithm on a dataset comprising interactions with 164
patients across 10 sessions each. Results indicate that while adjustments to algorithm parameters
influence the quality of pain care recommendations, this impact remains consistent across genders.
However, when certain patient information, such as self-reported pain measurements, is absent, the
quality of pain care recommendations for women is notably inferior to that for men.

1 Introduction

Pain is an unpleasant sensation and emotional experience that leads to poor quality of life for millions of people
worldwide. Chronic pain syndrome is a prevalent and increasingly common problem in many countries [Zimmer et al.,
2022]. Chronic pain, as indicated by a World Health Organization study, is associated with a four-fold increase in the
occurrence of depression or anxiety [Slack} |[2022]]. Chronic pain frequently disrupts individuals’ capacity to focus,
eat, and sleep. Considering the significant impact of chronic pain on individuals and society, a variety of machine
learning solutions have been proposed to provide effective pain care. See Matsangidou et al.|[2021]] for a comprehensive
survey. While there have been advancements in comprehending and treating chronic pain, providing effective pain care
continues to be a major problem. A significant challenge in effectively dealing with chronic pain lies in the considerable
variability among patients, both in their response to treatments and their susceptibility to adverse effects [|Ablin and
Buskila, 2012]. This variability hampers the efficacy of generic interventions, emphasizing the necessity for more
personalized approaches to address the intricate nature of chronic pain.

Chronic pain care necessitates treatments over a long period of time taking the feedback from patients into consideration.
Thus reinforcement learning algorithms, especially suited to make effective sequential decisions using feedback, provide
a suitable solution for machine learning-driven pain care. For example, Komorowski et al.| [2018]] used reinforcement
learning solutions to recommend personalized treatments that are on average more reliable than human clinicians. Saria
[2018]] proposed reinforcement learning methods for individualized treatment strategies to correct hypotension in Sepsis.
Roggeveen et al.|[2021] propose similar solutions for optimizing hemodynamic treatment for critically ill patients with
Sepsis. As evidenced by these articles, the ability of reinforcement learning algorithms to learn effectively from user
feedback makes them particularly suitable for making personalized decisions.
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However, a drawback of the ability to make personalized decisions is the potential for introducing biases related to
protected attributes such as gender. It has been seen that the design of the majority of machine learning algorithms
ignores the sex and gender dimension and its contribution to health differences among individuals [Cirillo et al., 2020].
In particular, machine learning tools for healthcare that use unisex treatments may disadvantage female patients [[Straw;
and Wu, [2022].

1.1 Our Contributions

In this study, we investigate gender fairness in personalized pain care recommendations made by using a machine
learning algorithm. We utilize the dataset |Piette|[2022] which is also used in an extensive study on machine-learning
driven pain care Piette et al.|[2022]. To allow for personalized recommendations, we model the problem at hand using
contextual bandits, a reinforcement learning problem formulation well-suited to deal with personalized sequential
decisions. In this model, the algorithm leverages a range of patient-specific details to tailor its recommendations. In
our experiments, we use LinUCB |Li et al.| [2010], an algorithm that serves as the cornerstone of leading solutions
for contextual bandits. Our results show that although adjustments to the parameter utilized by LinUCB result in
changes to the quality of pain care recommendations produced by the algorithm, this impact is consistent across both
men and women. However, when the algorithm lacks access to certain patient information, notably self-reported pain
measurements, the quality of pain care recommendations for women is discernibly worse compared to men.

2 Formalizing Pain Care as a Reinforcement Learning Problem

We model personalized pain care using contextual bandits — a reinforcement learning formalization that has been
used toward the goal of personalized decision-making in many domains including healthcare. In a contextual bandits
problem, at each decisionstept =1,2,...,7T":

* The algorithm observes a context i.e., some relevant information in the form of a set of feature values.

* Using this contextual information and previous observed feedback, the algorithm selects an option a; from the
set of available options A. After taking an action, the algorithm receives a (possibly randomized) numerical
value r; ,, as feedback. In reinforcement learning terminology, options and feedback are called actions and
rewards respectively. It is important to emphasize that the received reward 7 ,, only corresponds to the
action taken a; and no reward is observed for unchosen actions. Reward r; ,, informs the algorithm about the
goodness of a;. The higher the received reward, the better the corresponding action.

* The algorithm may choose to improve its action selection strategy with the new observation — {observed
context, selected action, received reward}.

With this formulation, the algorithm’s goal can be expressed as maximizing the cumulative sum of received rewards
ZL T¢,q,- Alternatively, the algorithm’s goal can also be expressed as minimizing regret formally defined by

T
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where E denotes the expectation and a; is the action with the maximum expected reward at decision step ¢. Regret can
be understood as the total mistake cost.

For personalized pain care, a decision step corresponds to the arrival of a patient. Context can be understood as the
relevant patient information. Actions are the available pain recommendations and feedback corresponds to the effects of
the given recommendation on the patient.

3 Materials and Methods

First, in Section 3.1} we provide details about the dataset we used in our experiments. Then in Section[3.2] we provide a
brief overview of the LinUCB algorithm employed in our study.

3.1 Data

We make use of the dataset provided in |Piette| [2022]). It contains information about interactions with 164 patients each
receiving pain care recommendations across 10 sessions. For each patient interaction, the feature values noted in the
dataset are as follows :
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* Percentage of days in the current week with steps goal met (0-1)
* Pain intensity change (0-1)

* CBT skill practice this week (0-10)

* Sleep quality this week (0-10)

* Sleep duration this week (0-22)

¢ Pain interferel (0-10)

¢ Pain interfere2 (0-10)

¢ Session Number (1-10)

In the above, Pain interferel represents a self-reported response to the query — “What number best describes how
much pain has interfered with your enjoyment of life today, with 0 meaning pain does not interfere and 10 meaning
pain completely interferes?”. Moreover, Pain interfere2 is a self-reported response to the query — “What number best
describes how much pain has interfered with your general activity today, with 0 meaning pain does not interfere and 10
meaning pain completely interferes?”

The recommendation options (or actions, in the parlance of reinforcement learning) are as follows :

e Option 1: Interactive voice response (IVR) call. During IVR calls, patients hear a recorded message from
their therapist.

* Option 2: A 15-minute telephone session with the therapist.

* Option 3: A 45-minute telephone session with the therapist.

It is apparent that option 2 is more human-resource intensive than option 1, while option 3 is the most human-resource
intensive among them. To address this disparity, |Piette et al.[[2022] recommend discounting the expected rewards of
option 2 and option 3 with additive factors of —0.02 and —0.06 respectively.

For each patient interaction, the entry recorded in the dataset contains values of all the seven features mentioned above,
the recommended action, and the observed reward.

Data Preprocessing: Firstly, we normalized all the feature values apart from the ordinal session numbers into the range
[0, 1]. Using this logged dataset directly for our evaluation experiments presents the following challenge. The rewards
are only recorded for the actions chosen by the logging policy, which are often likely to differ from the actions chosen
by the algorithm being evaluated. As a solution, we build a simulator to model patient interactions using this dataset as
a foundation. Concretely, we use the patient interactions [Piettel 2022] to build a set of weights for each action which
transform the values for the features into the expected reward. Using these weights, rewards are obtained for any set of
feature values with some noise being added to the expected reward. We used zero-mean Gaussian noise with a standard
deviation equal to the standard deviation observed in the recorded rewards for the corresponding action in the dataset
[Piette), [2022]].

The dataset [Piette, |2022]] divides the patients into three clusters based on subgroups of patients with different levels
of pain-related functioning at enrollment. To simulate more patient interactions than given in [Piette, 2022], average
feature values for men and women for each session and each cluster are calculated. The feature values are simulated
using the average feature values with an additive noise. We used zero-mean Gaussian noise with a standard deviation
equal to the standard deviation observed in the recorded feature values. While simulating new patients, we ensure that
the distribution of the total population across the three clusters remains consistent with the dataset: Cluster 1 accounts
for 24%, Cluster 2 for 42%, and Cluster 3 for 34%. We additionally ensure that the gender distribution within each
cluster mirrors that of the original dataset: Cluster 1 comprises 20% women, Cluster 2 comprises 7.1% women, and
Cluster 3 comprises 13.8% women.

3.2 Algorithm: LinUCB

For our experiments, we use the algorithm LinUCB introduced by [Li et al.[[2010]. LinUCB operates by maintaining
a set of linear models, each corresponding to a distinct action, and updates these models based on observed features
and associated rewards. LinUCB employs an upper confidence bound strategy to balance exploration and exploitation,
wherein it chooses actions with higher uncertainty within the bounds of linear model predictions, thus exploring
potentially advantageous actions while leveraging existing knowledge. By iteratively updating model parameters and
selecting actions according to their estimated values and uncertainty, LinUCB aims to maximize cumulative rewards
over time. We chose this algorithm as it is highly influential and forms the basis of other solutions proposed in the
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literature. Accordingly, we expect that the results obtained using LinUCB will have wide-reaching pertinence and will
also be relevant while using other solutions based on LinUCB.

4 Approach and Results

We examine whether differing parameter values influence gender fairness and if the inclusion or exclusion of certain
information in context affects gender fairness

4.1 Do differing parameter values affect gender fairness?

The only parameter used by LinUCB is the value «.. The role of « in the algorithm design is to control the exploration
and low values of « lead to less exploration. In the context of reinforcement learning algorithms such as LinUCB,
exploration refers to the tendency of algorithms to select actions that appear suboptimal according to the information
available then. Exploration is performed with the objective of acquiring information that is to see how profitable the
actions are. A reinforcement learning algorithm must perform exploration to effectively navigate unknown environments,
especially in its early stages when it lacks prior knowledge of action profitability. Inadequate exploration may cause
the algorithm to overlook highly rewarding actions. Conversely, excessive exploration can impede the algorithm’s
long-term objective of maximizing cumulative reward by sacrificing immediate rewards. Thus, achieving an optimal
balance of exploration is crucial for maximizing long-term performance.

In the context of this study, the effect of exploration can potentially be even more out-sized for women as they number
12.5% of the entire population. Accordingly, in this set of experiments, we investigate if changing the value of «
affects gender fairness. For each value of « in {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1}, we run LinUCB 100 times
for 300 and 500 patients with 10 sessions each resulting into 3000 and 5000 interactions respectively. In each of these
population sizes, the number of women is limited to 12.5% to imitate the fraction size as in the dataset [Piette|[2022].
We note that the rewards continue to rise up to 5000 interactions at which point reward scores stabilize, which matches
the observation made by [Piette et al.|[2022].

All the results shown in this article are averaged over 100 runs. Below, we show representative results for 7' = 3000
and T' = 5000. We use the following three performance metrics:

* Average reward for men (resp. women) = Total reward received by men (resp. women)/number of men (resp.

women)

* Fraction of suboptimal action selections for men (resp. women) = Number of times a suboptimal action is
selected for men (resp. women)/total number of action selections for men (resp. women)

* Per-step expected regret for men (resp. women)
As you can see in Figures|[T} 2] 3 ] [5|and [6] varying « affects the performance at a broader level as expected. When

the exploration parameter « is too small, there was likely insufficient exploration, the algorithm failed to 1dent1fy the
optimal actions which in turn led to low performance. On the other hand, when exploration parameter « is too large,
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Figure 1: Average Reward for 7' = 3000

Figure 2: Average Reward for 7' = 5000
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there was likely excessive exploration, and thus the algorithm wasted some opportunities to select highly rewarding
actions which in turn led to low performance.

When it comes to gender fairness, a discernible pattern is not seen in the results. From Figures[T]and 2] it can be seen
that the algorithm seems to consistently obtain higher average rewards for women than than for men. However, this
does not necessarily mean the algorithm performs better for women than men. Another plausible reason for the results
seen in Figures|l|and [2|could be that the optimal actions produce better rewards for women than for men. To circumvent
this possibility, results in Figures 3] {] show the fraction of suboptimal actions selected for men and women respectively.
Whereas results in Figures [5|and|6] show per-step regret which can be understood as the rewards foregone due to the
algorithm’s selection of a suboptimal action. Considering the performance metrics of the fraction of suboptimal actions
and per-step regret, the algorithm demonstrates comparable performance for men and women. In particular for the best
values of « (0.2 for T' = 3000 and 0.3 for T' = 5000), the algorithm demonstrates almost equivalent performance for
men and women.

4.2 Does including or excluding certain information in context affect gender fairness?

In the second set of experiments, we see how the features included in the context information can affect gender fairness.
‘We hypothesize that particularity features related to pain will have a significant influence on gender fairness. This is
taking into consideration that previous studies reported that genders do not feel pain the same way [Dance} 2019].

We evaluated gender fairness while using LinUCB with the sets of features described in Table [T} For 7' = 3000, we use
the the best performing value of v = 0.2 as seen in Figures|[T] [J]and 5] Analogously, For 7' = 3000, we use the the best
performing value of v = 0.3 as seen in Figures and[6]
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Feature Set

Included Features

Set 1

% of days in current week with steps goal met,
Pain intensity change,
CBT skill practice this week,

Sleep quality this week,

Sleep duration this week,
Pain interferel,
Pain interfere2,
Session Number

Set 2

% of days in current week with steps goal met,
Pain intensity change,
CBT skill practice this week,
Sleep quality this week,
Sleep duration this week,
Session Number

Set 3

% of days in current week with steps goal met,
Pain intensity change,
CBT skill practice this week,
Sleep quality this week,
Sleep duration this week,
Pain interfere2,
Session Number

Set 4

% of days in current week with steps goal met,
Pain intensity change,
CBT skill practice this week,
Sleep quality this week,
Sleep duration this week,
Pain interferel,
Session Number

Set 5

Pain intensity change,
Sleep quality this week,
Sleep duration this week,
Pain interferel,

Pain interfere2,
Session Number

Set 6

% of days in current week with steps goal met,
CBT skill practice this week,
Session Number

Set 7

% of days in current week with steps goal met,
CBT skill practice this week,
Sleep quality this week,
Sleep duration this week,
Pain interferel,
Pain interfere?2,
Session Number

Set 8

% of days in current week with steps goal met,
Pain intensity change,
CBT skill practice this week,
Pain interferel,
Pain interfere2,
Session Number
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Set 9

Pain intensity change,
CBT skill practice this week,
Sleep quality this week,
Sleep duration this week,
Pain interferel,

Pain interfere2,
Session Number

Table 1: Feature Sets and Included Features
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Figure 7: Average Reward for 7' = 3000 and Feature SetsFigure 8: Average Reward for 7' = 5000 and Feature Sets
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T = 3000 and Feature Sets 1 — 9

T = 5000 and Feature Sets 1 — 9

The results can be seen in Figures[7} [8] [0} [I0} [IT]and [T2] The results demonstrate that for all the performance metrics,
the algorithm demonstrates better performance for men as compared to women when features titled “Pain interferel",
“Pain interfere2" or “% of days in the current week with steps goal met" are excluded. This is particularly noteworthy
as, for all combinations of features examined, the algorithm consistently exhibits similar performance for men and
women. As previously noted, the differences in the quality of pain care recommendations, as measured by the fraction
of suboptimal actions and per-step regret, are especially insightful.
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5 Concluding Remarks

In summary, our study investigates gender fairness in personalized pain care recommendations, highlighting how
machine learning algorithms can cause gender disparities in healthcare outcomes. Our findings highlight the importance
of incorporating appropriate patient information into reinforcement learning-based pain care recommendations. Omitting
specific data, such as self-reported pain measurements, can diminish the quality of recommendations for women relative
to men.
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