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Formalization



Classical Markov Decision Process (MDP)

• MDP : standard model for problems in decision making with

uncertainty like RL.

• Classical MDP M(S,A, p,F ) with state space S, action space A,

transition probability p, reward function F .

• Learner selects action a in state s at time t = 1, . . . ,T

• learner receives reward rt drawn from dist. with mean r̄(s, a).

• environment transitions into next state s ′ ∈ S according to

p(s ′ | s, a).

• In classical MDPs, stochastic state-transition dynamics and reward

functions remain fixed (Bartlett and Tewari [2009], Burnetas and

Katehakis [1997], Jaksch et al. [2010]).
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Switching-MDP

Ü Our setting (Switching-MDP): transition dynamics and reward

functions change a certain number of times (abrupt changes)

• Switching-MDP M := (S = (M0, . . . ,Ml), c = (c1, . . . , cl))

• At t < c1, M is in its initial configuration M0(S,A, p0,F0) i.e. M0 is

active.

• At time step ci ≤ t < ci+1, M is in configuration Mi (S,A, pi ,Fi ) i.e.

Mi is active.

Ü Goal of algorithm A starting from an initial state s

Minimize regret ∆(M,A, s,T ) =
∑T

t=1 (ρ∗M(t)− rt)

ρ∗M(t) := Optimal average reward of the active MDP.
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Related work

• MDPs in which the state-transition probabilities change arbitrarily

but the reward functions remain fixed (Nilim and El Ghaoui [2005],

Xu and Mannor [2006]).

• MDPs with fixed state-transition probabilities and changing reward

functions Even-dar et al. [2005]

• Yuan Yu and Mannor [2009a] and Yuan Yu and Mannor [2009b]

consider arbitrary changes in the reward functions and arbitrary, but

bounded, changes in the state-transition probabilities.

• Abbasi et al. [2013] consider MDP problems with (oblivious)

adversarial changes in state-transition probabilities and reward

functions.
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Proposed algorithm: SW-UCRL



Proposed algorithm: SW-UCRL

• Key idea: Modify Ucrl2 to use only the last W samples for

computing the estimates.

• Input: A confidence parameter δ ∈ (0, 1) and window size W .

• Initialization: Set t := 1, and observe the initial state s1.
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SW-UCRL: Episode Initialization

1. Set the start time of episode k , tk := t.

2. For all (s, a) in S ×A, set vk(s, a) := 0

Nk (s, a) := # {tk −W ≤ τ < tk : sτ = s, aτ = a}

3. For all s, s ′ ∈ S and a ∈ A,

Rk (s, a) :=

tk−1∑
τ=tk−W

rτ1{sτ = s, aτ = a}

Pk (s, a, s ′) := # {tk −W ≤ τ < tk : sτ = s, aτ = a, sτ+1 = s ′}

4. Compute estimates

r̂k (s, a) :=
Rk(s, a)

max{1,Nk(s, a)}

p̂k (s ′|s, a) :=
Pk(s, a, s ′)

max{1,Nk(s, a)}
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SW-UCRL: Policy Computation

1. Let Mk be the set of all MDPs with state space S and action space

A, and with transition probabilities p̃ (·|s, a) close to p̂k (·|s, a), and

rewards r̃(s, a) ∈ [0, 1] close to r̂k (s, a), that is,

∣∣r̃(s, a)− r̂k
(
s, a
) ∣∣ ≤

√
7 log(2SAtk/δ)

2max{1,Nk (s,a)} and (1)∥∥∥p̃ (·|s, a)− p̂k
(
·|s, a

) ∥∥∥
1
≤

√
14S log(2Atk/δ)
max{1,Nk (s,a)} . (2)

2. Use extended value iteration to find a near optimal policy π̃k and an

optimistic MDP M̃k ∈Mk
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SW-UCRL: Policy Execution

Episode stopping criterion: number of occurrences of any (s, a) in the

episode (vk(s, a)) = number of occurrences of same (s, a) in W

observations before episode start(Nk(s, a))

While vk(st , π̃k(st)) < max{1,Nk(st , π̃k(st))} do

• Choose action at = π̃k(st), obtain reward rt .

• Observe next state st+1.

• Update vk(st , at) := vk(st , at) + 1.

• Set t := t + 1.
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Performance Bounds

Theorem (Regret Upper Bound)

Given a switching-MDP with l changes, the regret of SW-Ucrl using

window size W is upper-bounded with probability at least 1− δ by

2lW + 66.12

⌈
T√
W

⌉
DS

√
A log

(
T

δ

)
,

where D = max of diameters of constituent MDPs.

• Optimal value of W :

W ∗ =

(
16.53

l
TDS

√
A log

(
T

δ

))2/3
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Performance Bounds

Corollary (Regert Upper Bound using W ∗)

Given a switching-MDP with l changes, the regret of SW-Ucrl using

W ∗ =

(
16.53

l TDS
√
A log

(
T
δ

))2/3

is upper-bounded with probability at

least 1− δ by

38.94 · l1/3T 2/3D2/3S2/3

(
A log

(
T

δ

))1/3

.

Contribution: Improves upon the regret bound for

Ucrl2 with restarts (Jaksch et al.(2010) Jaksch

et al. [2010]) in terms of D, S and A.
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Performance Bounds

Corollary (Sample Complexity Bound)

Given a switching-MDP problem with l changes, the average per-step

regret of SW-Ucrl using W ∗ is at most ε with probability at least

1− δ after any T steps with

T ≥ 2 · (38.94)3 · lD
2S2A

ε3
log

(
(38.94)3lD2S2A

ε3δ

)
.
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(a) Average regret plot for 2 changes
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(b) Average regret plot for 4 changes

Figure 1: Average regret plots for switching-MDPs

• Switching-MDPs with S = 5,A = 3, and T = 100000.

• l changes happen at every dTl e time steps.

• SW-Ucrl with optimum window size W ∗

• For comparison : Ucrl2 with restarts (Ucrl2-R) and Ucrl2 with

restarts after every W ∗ time steps (Ucrl2-RW)
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Summary and Future Directions



Summary and Future Directions

• SW-Ucrl: a competent solution for regret-minimization on

switching-MDPS.

• Variation-dependent regret bound?

• Link between allowable variation in rewards and transition

probabilities and minimal achievable regret? (like Besbes et al.

[2014] for bandits)

• Refine episode-stopping criterion?
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Thank you all.
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SW-UCRL: Policy computation

1. Let Mk be the set of all MDPs with state space S and action space

A, and with transition probabilities p̃ (·|s, a) close to p̂k (·|s, a), and

rewards r̃(s, a) ∈ [0, 1] close to r̂k (s, a), that is,

∣∣r̃(s, a)− r̂k
(
s, a
) ∣∣ ≤

√
7 log(2SAtk/δ)

2max{1,Nk (s,a)} and (3)∥∥∥p̃ (·|s, a)− p̂k
(
·|s, a

) ∥∥∥
1
≤

√
14S log(2Atk/δ)
max{1,Nk (s,a)} . (4)

2. Use extended value iteration to find a policy near optimal policy π̃k
and an optimistic MDP M̃k ∈Mk such that

ρ̃k := min
s
ρ(M̃k , π̃k , s) ≥ max

M′∈Mk ,π,s′
ρ(M ′, π, s ′)− 1√

tk
.
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