Multi-Armed Bandits with Relative Feedback

Pratik Gajane

Orange labs & INRIA SequeL

7 th June 2017 Statistical Natural Language Processing Colloquium, Heidelberg University

Outline

1. [Dueling bandits](#page-2-0)

2. [Analysis of the algorithm](#page-12-0)

3. [Experiments](#page-19-0)

Motivation for the dueling bandit problem

- In many practical situations, relative feedback is available, and not absolute feedback.
- Eg: "I like Tennis more than Basketball" instead of "I value tennis at 48/50 and Basketball at 33/50".

- Information retrieval systems where users provide implicit feedback about the provided results.
- Interleaved filtering, proposed by Radlinski et al. [\[3\]](#page-23-0), interleaves the rankings to remove the bias.
- Inability of classical MAB to deal with relative feedback motivates new problem setting.

The dueling bandit problem

- A variation of the classical Multi-Armed Bandit (MAB) to deal with **relative** feedback.
- At each time period, the learner selects two arms.
- The learner only sees the outcome of the duel between the selected arms.
- The learner receives a function of the rewards of the selected arms.

Formulating the duelings bandits

- Matrix-based formulation
	- \blacktriangleright preference matrix contains $\mathbb{P}_{a,b} =$ unknown probability with which a wins the duel arewardst b.

- Utility-based formulation
	- At each time t, a utility $x_a(t)$ is associated with each arm a.
	- \triangleright When arms a and b are selected. $x_a(t) > x_b(t)$: a wins the duel $x_a(t) < x_b(t)$: b wins the duel $x_a(t) = x_b(t)$: $\begin{cases} a \text{ wins the duel with probability } 0.5 \\ b \text{ wins the dollar.} \end{cases}$ b wins the duel with probability 0.5

Utility-based adversarial dueling bandits

- State of the art dueling bandits algorithms are for stochastic bandits. \rightarrow arm rewards are independent and identically distributed (iid).
- Adversarial dueling bandits allow us to drop these assumptions.
- In our setting, the adversary chooses a sequence of utility vectors $\mathbf{x}(t) = (x_1(t), \dots, x_k(t)) \in [0,1]^K$ for $t = 1, \dots, T$.
- At each time t , the learner chooses two arms a and b , **Instantaneous reward** $= \frac{x_a(t)+x_b(t)}{2}$ 2 (hidden)

Feedback =
$$
x_a(t) - x_b(t)
$$

Utility-based adversarial dueling bandits

- State of the art dueling bandits algorithms are for stochastic bandits. \rightarrow arm rewards are independent and identically distributed (iid).
- Adversarial dueling bandits allow us to drop these assumptions.
- In our setting, the adversary chooses a sequence of utility vectors $\mathbf{x}(t) = (x_1(t), \dots, x_K(t)) \in \{0,1\}^K$ for $t = 1, \dots, T$.

• At each time t , the learner chooses two arms a and b , **Instantaneous reward** $= \frac{x_a(t)+x_b(t)}{2}$ $\frac{+x_b(t)}{2}$ (hidden) $\sqrt{ }$

Feedback (binary rewards) $=$ \int \overline{a} -1 if $x_a(t) < x_b(t)$ 0 if $x_a(t) = x_b(t)$ $+1$ if $x_a(t) > x_b(t)$

Lower bound for any dueling bandit algorithm

Theorem

For $K > 2$ and $T > K$, there exists a distribution over assignments of rewards such that the expected cumulative regret of any utility-based dueling bandit algorithm cannot be less than $Ω(\sqrt{KT}).$

 \mathbb{G}_{max} - Maximum possible reward for a single-arm strategy $\mathbb{E}(\mathbb{G}_{\mathsf{alg}})$ - Expected reward earned by the algorithm's strategy $\mathbb{G}_{max} - \mathbb{E}(\mathbb{G}_{\text{alg}})$ - Expected cumulative regret

- We proved this by reduction to classical bandits as suggested in Ailon et al. [\[1\]](#page-23-1)
- Lower bound for adversarial dueling bandits $=$ lower bound of classical adversarial bandits = $\Omega(\sqrt{KT})$
- Data dependent lower bound for stochastic bandits $=$ $\Omega(K \log(T)/\Delta)$

- Non-trivial extension of $EXP3$ [\[2\]](#page-23-2) to the dueling bandits with binary rewards.
- Assigns a weight to each arm. Higher weight \implies higher selection probability.

•
$$
d = x_a - x_b =
$$

\n
$$
\begin{cases}\n-1 & \text{if } x_a < x_b \\
0 & \text{if } x_a = x_b \\
+1 & \text{if } x_a > x_b\n\end{cases}
$$

• For anytime version, a kind of "doubling trick" (Seldin et al. $|4|$).

- 1: **Parameters:** Real $\gamma \in (0, 0.5)$
- 2: **Initialization:** $w_i(1) = 1$ for $i=1,\ldots,K$.

3: for
$$
t = 1, 2, ...
$$
 do

4: for
$$
i = 1, \ldots, K
$$
 do

5:
$$
p_i(t) \leftarrow \qquad (1 - \gamma) \frac{w_i(t)}{\sum_{j=1}^K w_j(t)} + \frac{\gamma}{K}
$$

6: end for

7: Pull $a, b \sim (p_1(t), \ldots, p_K(t)).$

8: Get relative feedback

$$
d \in \{-1, 0, +1\}
$$

9: if
$$
a \neq b
$$
 then
10: $w_a(t+1) \leftarrow w_a(t) \cdot e^{\frac{\gamma}{K} \frac{d}{2\rho_a}}$

11:
$$
w_b(t+1) \leftarrow w_b(t) \cdot e^{-\frac{\gamma}{K} \frac{d}{2p_b}}
$$

 $12:$ end if 13: Update γ (for anytime version)

8

$$
\begin{array}{c} \text{Weights at } t = 0\\ (\gamma = 0.4) \end{array}
$$

• Update weight according to (relative) feedback.

- 1: **Parameters:** Real $\gamma \in (0, 0.5)$
- 2: **Initialization:** $w_i(1) = 1$ for $i = 1, \ldots, K$.

3: for
$$
t = 1, 2, ...
$$
 do

4: for
$$
i = 1, ..., K
$$
 do

5:
$$
p_i(t) \leftarrow \n\left(1 - \gamma\right) \frac{w_i(t)}{\sum_{j=1}^K w_j(t)} + \frac{\gamma}{K}
$$

- 6: end for
- 7: Pull

$$
\quad a,b\sim \, (p_1(t),\ldots,p_K(t)).
$$

8: Get relative feedback
$$
d \in \{-1, 0, +1\}
$$

9: if
$$
a \neq b
$$
 then
10: $w_a(t+1) \leftarrow w_a(t) \cdot e^{\frac{\gamma}{K} \frac{d}{2\rho_a}}$

11:
$$
w_b(t+1) \leftarrow w_b(t) \cdot e^{-\frac{\gamma}{K} \frac{d}{2p_b}}
$$

12: end if 13: Update γ (for anytime version) 9

$$
a = 1, b = 2, x_a > x_b
$$

Weights at $t = 1$

• Weight may decrease unlike EXP3.

- 1: **Parameters:** Real $\gamma \in (0, 0.5)$
- 2: **Initialization:** $w_i(1) = 1$ for $i = 1, \ldots, K$.

3: for
$$
t = 1, 2, ...
$$
 do

4: for
$$
i = 1, ..., K
$$
 do

5:
$$
p_i(t) \leftarrow \qquad (1 - \gamma) \frac{w_i(t)}{\sum_{j=1}^K w_j(t)} + \frac{\gamma}{K}
$$

- 6: end for
- 7: Pull

$$
\quad a,b\sim \, (p_1(t),\ldots,p_K(t)).
$$

8: Get relative feedback
$$
d \in \{-1, 0, +1\}
$$

9: if
$$
a \neq b
$$
 then
10: $w_a(t+1) \leftarrow w_a(t) \cdot e^{\frac{\gamma}{K} \frac{d}{2\rho_a}}$

11:
$$
w_b(t+1) \leftarrow w_b(t) \cdot e^{-\frac{\gamma}{K} \frac{d}{2p_b}}
$$

12: end if 13: Update γ (for anytime version) 9

$$
a = 1, b = 3, x_a > x_b
$$

Weights at $t = 2$

• Weights spike at arms who win the duel regularly.

- 1: **Parameters:** Real $\gamma \in (0, 0.5)$
- 2: **Initialization:** $w_i(1) = 1$ for $i=1,\ldots,K$.

3: for
$$
t = 1, 2, ...
$$
 do

4: for
$$
i = 1, ..., K
$$
 do
5: $p_i(t) \leftarrow$

$$
(1-\gamma)\frac{w_i(t)}{\sum_{j=1}^K w_j(t)} + \frac{\gamma}{K}
$$

- 6: end for
- 7: Pull

$$
a,b\sim (p_1(t),\ldots,p_K(t)).
$$

8: Get relative feedback
$$
d \in \{-1, 0, +1\}
$$

9: if
$$
a \neq b
$$
 then
10: $w_a(t+1) \leftarrow w_a(t) \cdot e^{\frac{\gamma}{K} \frac{d}{2\rho_a}}$

11:
$$
w_b(t+1) \leftarrow w_b(t) \cdot e^{-\frac{\gamma}{K} \frac{d}{2p_b}}
$$

12: end if 13: Update γ (for anytime version) 9

Upper bound for REX3

Theorem

$$
\mathbb{G}_{\text{max}} - \mathbb{E}(\mathbb{G}_{\text{alg}}) \leq \frac{K}{\gamma} \ln(K) + \gamma \tau
$$

where

$$
\tau = e \cdot \mathbb{E} \mathbb{G}_{\text{alg}} - (4 - e) \cdot \mathbb{E} \mathbb{G}_{\text{unif}}
$$

Corollary
\nWhen
$$
\gamma = \min \left\{ \frac{1}{2}, \sqrt{\frac{K \ln(K)}{\tau}} \right\}
$$
, the
\nexpected cumulative regret of REX3
\nis bounded by $\mathcal{O}\left(\sqrt{K \ln(K)T}\right)$.

- Upper bound of $REX3 = Upper$ bound of exp3.
- Optimality: REX3 \sim In $\Omega\left(\sqrt{KT}\right)$

Analysis of REX3

- Main challenge of dueling bandits: no direct way to estimate absolute reward values like EXP3.
- In EXP3, since we can observe absolute feedback (x_a) , the estimator $\hat{x}_i(t)$ is defined as follows:

$$
\hat{x}_i(t) = [i = a] \frac{x_a(t)}{p_a(t)}
$$

- The division by p_a ensures that more "surprising" (i.e. lower p_a) the observed reward x_a , higher is the estimator.
- Ensures that their expectations are equal to the actual rewards for each action i.e.

$$
\mathbb{E}[\hat{x}_i(t)] = x_i(t)
$$

Analysis of REX3

- Feedback in dueling bandits is relative $(x_a x_b)$ instead of absolute (x_a) , so the use of EXP3 estimator is not possible.
- To overcome this challenge, we introduced a new estimator $\hat{c}_i(t)$.
- We define $\hat{c}_i(t)$ in the following way:

$$
\hat{c}_i(t) = \llbracket i = a \rrbracket \frac{(x_a - x_b)}{2p_a} + \llbracket i = b \rrbracket \frac{(x_b - x_a)}{2p_b}
$$

• It gives us a way to provide weight update rule in a concise form: Weight update rule earlier $10: w_a(t+1) \leftarrow w_a(t) \cdot e^{\frac{\gamma}{K} \frac{d}{2p_a}}$ 11: $w_b(t+1) \leftarrow w_b(t) \cdot e^{-\frac{\gamma}{K} \frac{d}{2p_b}}$

Weight update rule using $\hat{c}_i(t) \quad \forall i \, w_i(t+1) = w_i(t) \cdot e^{\frac{\gamma}{K} \hat{c}_i(t)}$

Key element of the analysis

Lemma for expectation of $\hat{c}_i(t)$

$$
\mathbb{E}[\hat{c}_i(t)|(a_1, b_1),..,(a_{t-1}, b_{t-1})] = x_i(t) - \mathbb{E}_{a \sim p(t)} x_a(t)
$$

- The expectation of this estimator is the expected instantaneous regret of the algorithm against arm i.
- \bullet *i.e.* the difference between the gain of arm *i* and the expected gain according to algorithm's current state of knowledge $p(t)$.
- This is intuitively what we want from an estimator in a dueling bandit problem.

Sketch of proof

The general structure of the proof is similar to the proof of EXP3 [\[2\]](#page-23-2) except the difference in expectation of the $\hat{c}_i(t)$ estimator. Let $W_t = w_1(t) + w_2(t) + \cdots + w_K(t)$.

$$
\frac{W_{t+1}}{W_t} = \sum_{i=1}^{K} \frac{p_i(t) - \gamma/K}{1 - \gamma} e^{(\gamma/K)\hat{c}_i(t)}
$$
(1)

As in $EXP3$, we simplify, take the logarithm and sum over t . We get for any j:

$$
\sum_{t=1}^T \frac{\gamma}{K} \hat{c}_j(t) - \ln(K) \leq \frac{\gamma^2/K}{1-\gamma} M_1 + \frac{(e-2)\gamma^2/K}{1-\gamma} M_2
$$

Sketch of proof (continued)

By taking the expectation over the algorithm's randomization, we obtain for any j :

$$
\sum_{t=1}^{T} \frac{\gamma}{K} \mathbb{E}_{\sim p} \hat{c}_j(t) - \ln(K) \le
$$
\n
$$
\frac{\gamma^2/K}{1-\gamma} \sum_{i=t}^{T} \mathbb{E}_{\sim p} M_1 + \frac{(e-2)\gamma^2/K}{1-\gamma} \sum_{i=t}^{T} \mathbb{E}_{\sim p} M_2 \tag{2}
$$

Sketch of proof (continued)

From Lemma [13,](#page-15-0) expectation of M_1 , expectation of M_2 , and by definition of \mathbb{G}_{max} , \mathbb{EG}_{alg} , and \mathbb{EG}_{unif} , the inequality [\(2\)](#page-17-0) rewrites into:

$$
\mathbb{G}_{\text{max}} - \mathbb{EG}_{\text{alg}} - \frac{K \ln K}{\gamma} \le \frac{\gamma}{1 - \gamma} \left(\mathbb{EG}_{\text{alg}} - \mathbb{EG}_{\text{unif}} \right)
$$

$$
+ \frac{(e - 2)\gamma}{2(1 - \gamma)} \left(\mathbb{EG}_{\text{alg}} + \mathbb{EG}_{\text{unif}} \right)
$$

Assuming $\gamma \leq \frac{1}{2}$ $\frac{1}{2}$ we finally obtain:

$$
\mathbb{G}_{\textit{max}} - \mathbb{E} \mathbb{G}_{\textit{alg}} \leq \frac{K \ln K}{\gamma} + \gamma \left(e \mathbb{E} \mathbb{G}_{\textit{alg}} - (4 - e) \mathbb{E} \mathbb{G}_{\textit{unif}} \right)
$$

Experiments

- We used interleaved filtering on real datasets from information retrieval systems.
- We considered the following state of the art algorithms: BTM [\[6\]](#page-24-1) (explore-then-exploit setting), $SAVAGE$ [\[5\]](#page-24-2), $RUCB$ [\[7\]](#page-25-0), and SPARRING coupled with EXP3 [\[1\]](#page-23-1) and Random as baseline.
- The experiments showed that REX3 and especially its anytime version are competitive solutions for the dueling bandit problem.

Experiments

Figure 1: Average regret and accuracy plots on ARXIV dataset (6 rankers). Time and regret scales are logarithmic.

Experiments

Figure 2: On the left: average regret and accuracy plots on $MSLR30K$ with navigational queries ($K = 136$ rankers). On the right: same dataset, fixed $T = 10^5$ and $K = 4$ - 136. Colored areas show minimal and maximal values.

Simulations on non-stationary rewards

Figure 3: $K = 10$, gains from Bernoulli distributions. Best arm's gain is $1/2 + \Delta(t)$ with $\Delta(t) = \sqrt{K \cdot \log(t)/t}$. Others are stationary with a mean of $1/2$.

References I

S.

N. Ailon, Z. Shay Karnin, and T. Joachims. Reducing dueling bandits to cardinal bandits. In ICML 2014, volume 32 of JMLR Proceedings, pages 856–864, 2014.

歸 Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire.

The nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

F. Radlinski and T. Joachims. 晶

> Active exploration for learning rankings from clickthrough data.

In KDD 2007, pages 570–579. ACM, 2007.

References II

Yevgeny Seldin, Csaba Szepesvári, Peter Auer, and Yasin 譶 Abbasi-Yadkori. Evaluation and analysis of the performance of the exp3 Algorithm in stochastic environments. In EWRL, volume 24 of JMLR Proceedings, pages 103–116, 2012.

- **T.** Urvoy, F. Clerot, R. Féraud, and S. Naamane. Generic exploration and K-armed voting bandits. In ICML 2013, volume 28 of JMLR Proceedings, pages 91–99, 2013.
- **No. 2. Y.** Yue and T. Joachims.

Beat the mean bandit.

In ICML 2011, pages 241–248. Omnipress, 2011.

References III

Masrour Zoghi, Shimon Whiteson, Remi Munos, and Maarten de Rijke.

Relative upper confidence bound for the k-armed dueling bandit problem.

In ICML 2014, volume 32 of JMLR Proceedings, pages 10–18, 2014.