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Motivation for the dueling bandit problem

• In many practical situations, relative feedback is available,
and not absolute feedback.

• Eg: “I like Tennis more than Basketball” instead of “I value
tennis at 48/50 and Basketball at 33/50”.

Ranking A Ranking B
Interleaved
Ranking

• Information retrieval systems where
users provide implicit feedback about
the provided results.

• Interleaved filtering, proposed by
Radlinski et al. [3], interleaves the
rankings to remove the bias.

• Inability of classical MAB to deal with
relative feedback motivates new
problem setting.
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The dueling bandit problem

• A variation of the classical Multi-Armed Bandit (mab) to deal
with relative feedback.

• At each time period, the
learner selects two arms.

• The learner only sees the
outcome of the duel between
the selected arms.

• The learner receives a function
of the rewards of the selected
arms.
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Formulating the duelings bandits

• Matrix-based formulation
I preference matrix contains Pa,b = unknown probability with

which a wins the duel arewardst b.




1 2 ··· K

1 1/2 P1,2 P1,K

2 P2,1 1/2 P2,K
...

. . .

K PK ,1 PK ,2 1/2




• Utility-based formulation
I At each time t, a utility xa(t) is associated with each arm a.
I When arms a and b are selected,

xa(t) > xb(t) : a wins the duel

xa(t) < xb(t) : b wins the duel

xa(t) = xb(t) :

{
a wins the duel with probability 0.5

b wins the duel with probability 0.5
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Utility-based adversarial dueling bandits

• State of the art dueling bandits algorithms are for stochastic
bandits. → arm rewards are independent and identically
distributed (iid).

• Adversarial dueling bandits allow us to drop these
assumptions.

• In our setting, the adversary chooses a sequence of utility
vectors x(t) = (x1(t), . . . , xK (t)) ∈ [0, 1]K for t = 1, . . . ,T .

• At each time t, the learner chooses two arms a and b,
Instantaneous reward = xa(t)+xb(t)

2 (hidden)

Feedback

(binary rewards)

= xa(t)− xb(t)





−1 if xa(t) < xb(t)

0 if xa(t) = xb(t)

+1 if xa(t) > xb(t)
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Lower bound for any dueling bandit algorithm

Theorem

For K ≥ 2 and T ≥ K , there exists a distribution over assignments
of rewards such that the expected cumulative regret of any
utility-based dueling bandit algorithm cannot be less than
Ω(
√
KT ).

Gmax - Maximum possible reward for a single-arm strategy
E(Galg ) - Expected reward earned by the algorithm’s strategy
Gmax − E(Galg ) - Expected cumulative regret

• We proved this by reduction to classical bandits as suggested
in Ailon et al. [1]

• Lower bound for adversarial dueling bandits = lower bound of
classical adversarial bandits = Ω(

√
KT )

• Data dependent lower bound for stochastic bandits =
Ω(K log(T )/∆)
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Relative Exponential Weighing Algorithm (REX3)

• Non-trivial extension of
exp3 [2] to the dueling
bandits with binary rewards.

• Assigns a weight to each
arm. Higher weight =⇒
higher selection probability.

• d = xa − xb =



−1 if xa < xb

0 if xa = xb

+1 if xa > xb

• For anytime version, a kind
of “doubling trick” (Seldin
et al. [4]).

1: Parameters: Real γ ∈ (0, 0.5)
2: Initialization: wi (1) = 1 for

i = 1, . . . ,K .
3: for t = 1, 2, . . . do

4: for i = 1, . . . ,K do
5: pi (t)←

(1− γ) wi (t)∑K
j=1 wj (t)

+ γ
K

6: end for
7: Pull

a, b ∼ (p1(t), . . . , pK (t)).
8: Get relative feedback

d ∈ {−1, 0,+1}
9: if a 6= b then

10: wa(t + 1)← wa(t) · e γ
K

d
2pa

11: wb(t + 1)← wb(t) · e−
γ
K

d
2pb

12: end if
13: Update γ (for anytime

version)
14: end for
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Relative Exponential Weighing Algorithm (REX3)

Weights at t = 0
(γ = 0.4)

• Update weight according
to (relative) feedback.

1: Parameters: Real γ ∈ (0, 0.5)
2: Initialization: wi (1) = 1 for

i = 1, . . . ,K .
3: for t = 1, 2, . . . do

4: for i = 1, . . . ,K do
5: pi (t)←

(1− γ) wi (t)∑K
j=1 wj (t)

+ γ
K

6: end for
7: Pull

a, b ∼ (p1(t), . . . , pK (t)).
8: Get relative feedback

d ∈ {−1, 0,+1}
9: if a 6= b then

10: wa(t + 1)← wa(t) · e γ
K

d
2pa

11: wb(t + 1)← wb(t) · e−
γ
K

d
2pb

12: end if
13: Update γ (for anytime

version)
14: end for
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Relative Exponential Weighing Algorithm (REX3)

a = 1, b = 2, xa > xb
Weights at t = 1

• Weight may decrease
unlike EXP3.

1: Parameters: Real γ ∈ (0, 0.5)
2: Initialization: wi (1) = 1 for

i = 1, . . . ,K .
3: for t = 1, 2, . . . do
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K

d
2pa

11: wb(t + 1)← wb(t) · e−
γ
K

d
2pb

12: end if
13: Update γ (for anytime

version)
14: end for
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Relative Exponential Weighing Algorithm (REX3)

a = 1, b = 3, xa > xb
Weights at t = 2

• Weights spike at arms
who win the duel
regularly.

1: Parameters: Real γ ∈ (0, 0.5)
2: Initialization: wi (1) = 1 for

i = 1, . . . ,K .
3: for t = 1, 2, . . . do

4: for i = 1, . . . ,K do
5: pi (t)←

(1− γ) wi (t)∑K
j=1 wj (t)

+ γ
K

6: end for
7: Pull

a, b ∼ (p1(t), . . . , pK (t)).
8: Get relative feedback

d ∈ {−1, 0,+1}
9: if a 6= b then

10: wa(t + 1)← wa(t) · e γ
K

d
2pa

11: wb(t + 1)← wb(t) · e−
γ
K

d
2pb

12: end if
13: Update γ (for anytime

version)
14: end for
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Upper bound for REX3

Theorem

Gmax − E(Galg ) ≤ K
γ ln(K ) + γτ

where
τ = e · EGalg − (4−e) · EGunif

Corollary

When γ = min

{
1
2 ,

√
K ln(K)

τ

}
, the

expected cumulative regret of rex3

is bounded by O
(√

K ln(K )T
)
.

• Upper bound of rex3 = Upper
bound of exp3.

• Optimality:

rex3 ∼ln Ω
(√

KT
)
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Analysis of REX3

• Main challenge of dueling bandits: no direct way to estimate
absolute reward values like EXP3.

• In EXP3, since we can observe absolute feedback (xa), the
estimator x̂i (t) is defined as follows:

x̂i (t) = Ji = aK
xa(t)

pa(t)

• The division by pa ensures that more “surprising” (i.e. lower
pa) the observed reward xa, higher is the estimator.

• Ensures that their expectations are equal to the actual
rewards for each action i.e.

E[x̂i (t)] = xi (t)

11



Analysis of REX3

• Feedback in dueling bandits is relative (xa − xb) instead of
absolute (xa), so the use of EXP3 estimator is not possible.

• To overcome this challenge, we introduced a new estimator
ĉi (t).

• We define ĉi (t) in the following way:

ĉi (t) = Ji = aK
(xa − xb)

2pa
+ Ji = bK

(xb − xa)

2pb

• It gives us a way to provide weight update rule in a concise form:

Weight update rule earlier 10: wa(t + 1)← wa(t) · e
γ
K

d
2pa

11: wb(t + 1)← wb(t) · e−
γ
K

d
2pb

Weight update rule using ĉi (t) ∀i wi (t + 1) = wi (t) · e γ
K
ĉi (t)
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Key element of the analysis

Lemma for expectation of ĉi(t)

E [ĉi (t)|(a1, b1), .., (at−1, bt−1)] = xi (t)− Ea∼p(t)xa(t)

• The expectation of this estimator is the expected
instantaneous regret of the algorithm against arm i .

• i.e. the difference between the gain of arm i and the expected
gain according to algorithm’s current state of knowledge p(t).

• This is intuitively what we want from an estimator in a
dueling bandit problem.

13



Sketch of proof

The general structure of the proof is similar to the proof of exp3
[2] except the difference in expectation of the ĉi (t) estimator.
Let Wt = w1(t) + w2(t) + · · ·+ wK (t).

Wt+1

Wt
=

K∑

i=1

pi (t)− γ/K
1− γ e(γ/K)ĉi (t) (1)

As in exp3, we simplify, take the logarithm and sum over t. We
get for any j :

T∑

t=1

γ

K
ĉj(t)− ln(K ) ≤ γ2/K

1− γM1 +
(e − 2)γ2/K

1− γ M2
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Sketch of proof (continued)

By taking the expectation over the algorithm’s randomization, we
obtain for any j :

T∑

t=1

γ

K
E∼p ĉj(t)− ln(K ) ≤

γ2/K

1− γ
T∑

i=t

E∼pM1 +
(e − 2)γ2/K

1− γ
T∑

i=t

E∼pM2 (2)
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Sketch of proof (continued)

From Lemma 13, expectation of M1, expectation of M2, and by
definition of Gmax , EGalg , and EGunif , the inequality (2) rewrites
into:

Gmax − EGalg −
K lnK

γ
≤ γ

1− γ (EGalg − EGunif )

+
(e−2)γ

2(1− γ)
(EGalg + EGunif )

Assuming γ ≤ 1
2 we finally obtain:

Gmax − EGalg ≤
K lnK

γ
+ γ (eEGalg − (4−e)EGunif )
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Experiments

Ranking A Ranking B
Interleaved
Ranking

• We used interleaved filtering on real datasets from
information retrieval systems.

• We considered the following state of the art algorithms: BTM
[6] (explore-then-exploit setting), savage [5], rucb [7], and
Sparring coupled with exp3 [1] and Random as baseline.

• The experiments showed that REX3 and especially its
anytime version are competitive solutions for the dueling
bandit problem.
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Experiments
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Figure 1: Average regret and accuracy plots on arxiv dataset (6
rankers). Time and regret scales are logarithmic.
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Experiments
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Simulations on non-stationary rewards

102

103

104

105

cu
m

ul
at

iv
e

ba
nd

it
re

gr
et Random Policy

Sparring+ucb
Sparring+exp3 for T = 107

RUCB (α = 0.51)
Rex3 for T = 107

Rex3 (adaptive γ)

0
0.2
0.4
0.6
0.8

1

ac
cu

ra
cy

0
0.1
0.2
0.3
0.4
0.5

102 103 104 105 106 107

ga
p

∆

time

∆(t) =
√

K· ln (t)
t

Figure 3: K = 10, gains from Bernoulli distributions. Best arm’s gain is
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√
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mean of 1/2.
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