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Motivation for the dueling bandit problem

e In many practical situations, relative feedback is available,
and not absolute feedback.

e Eg: "I like Tennis more than Basketball” instead of “I value
tennis at 48/50 and Basketball at 33/50".

e Information retrieval systems where
users provide implicit feedback about

RankingA | eaved  Fanking® the provided results.
dl Ranking d5 ) .
dQ\dl do e Interleaved filtering, proposed by

e Inability of classical MAB to deal with
dg relative feedback motivates new
problem setting.

d4\d5 33 Radlinski et al. [3], interleaves the
37\6127(18 rankings to remove the bias.
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The dueling bandit problem

e A variation of the classical Multi-Armed Bandit (MAB) to deal
with relative feedback.

e At each time period, the
learner selects two arms.

e The learner only sees the
outcome of the duel between
the selected arms.

e The learner receives a function
of the rewards of the selected
arms.




Formulating the duelings bandits

e Matrix-based formulation
» preference matrix contains IP, , = unknown probability with

which a wins the duel arewardst b.
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e Utility-based formulation
» At each time t, a utility x,(t) is associated with each arm a.

» When arms a and b are selected,
X5(t) > xp(t) : a wins the duel
X5(t) < xp(t) : b wins the duel
a wins the duel with probability 0.5
xp(t) :

Xa(t) — . . .
b wins the duel with probability 0.5
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Utility-based adversarial dueling bandits

State of the art dueling bandits algorithms are for stochastic
bandits. — arm rewards are independent and identically
distributed (iid).

Adversarial dueling bandits allow us to drop these
assumptions.

In our setting, the adversary chooses a sequence of utility

vectors x(t) = (x1(t),...,xk(t)) €[0,1]X for t =1,..., T.

At each time t, the learner chooses two arms a and b,
Instantaneous reward = M (hidden)

Feedback = xa(t) — xp(t)



Utility-based adversarial dueling bandits

State of the art dueling bandits algorithms are for stochastic
bandits. — arm rewards are independent and identically
distributed (iid).

Adversarial dueling bandits allow us to drop these
assumptions.

In our setting, the adversary chooses a sequence of utility
vectors x(t) = (x1(t),...,xk(t)) € {0,1}K for t =1,..., T.
At each time t, the learner chooses two arms a and b,

Instantaneous reward = M (hidden)

—1 if x5(t) < xp(t)

Feedback (binary rewards) = 0 if xa(t) = xp(t)
+1 if xa(t) > xp(t)



Lower bound for any dueling bandit algorithm

Theorem

For K > 2 and T > K, there exists a distribution over assignments
of rewards such that the expected cumulative regret of any
utility-based dueling bandit algorithm cannot be less than

Q(VKT).

Gmax - Maximum possible reward for a single-arm strategy
E(G.jg) - Expected reward earned by the algorithm's strategy
Gmax — E(Ga,yg) - Expected cumulative regret

e We proved this by reduction to classical bandits as suggested
in Ailon et al. [1]

e Lower bound for adversarial dueling bandits = lower bound of
classical adversarial bandits = Q(vKT)

e Data dependent lower bound for stochastic bandits =
Q(Klog(T)/A)



Relative Exponential Weighing Algorithm (REX3)

Non-trivial extension of
EXP3 [2] to the dueling

bandits with binary rewards.

Assigns a weight to each
arm. Higher weight —
higher selection probability.
d=x;—xp =

-1 ifx; < xp

0 if x; = xp

+1 if x; > xp
For anytime version, a kind
of “doubling trick” (Seldin
et al. [4]).

1: Parameters: Real v € (0,0.5)
2: Initialization: w;(1) =1 for

i=1,....K.

3: fort=1,2,... do

10:
11:

12:
13:

fori=1,...,K do
pi(t) < "
T =Nsriwe * x
end for
Pull
a,b~ (pi(t),...,px(t)).
Get relative feedback
de{-1,0,+1}
if a £ b then
w,(t+ 1)« wy(t

)-e
Wb(t+1) — Wb( )

. d
K

2pa
_yd
K 2pp,
end if

Update ~ (for anytime
version)



Relative Exponential Weighing Algorithm (REX3)

Weights at t =0
(y=04)

e Update weight according
to (relative) feedback.

1

4.
5:

Parameters: Real v € (0,0.5)
Inltlallzatlon w; (1 ) =1 for

a, b~ (pl( ) ..... pK(t)).
Get relative feedback
de{-1,0,+1}
if a # b then
yo_d
wo(t + 1) <= w,(t) - ek 2

_xd

wp(t+1) < wp(t)-e K2

end if
Update ~y (for anytime
version)



Relative Exponential Weighing Algorithm (REX3)

a=1b=2, x3>xp
Weights at t =1

e Weight may decrease
unlike EXP3.

1

4.

Parameters: Real v € (0,0.5)
Inltlallzatlon w; (1 ) =1 for

for/: ,...,Kdo
pi(t) < "
~) —wilt y
1= T x
end for
Pull

a, b~ (pl( ) ..... pK(t)).
Get relative feedback
de{-1,0,+1}
if a # b then
yo_d
wo(t + 1) <= w,(t) - ek 2

_xd

wp(t+1) < wp(t)-e K2

end if
Update ~y (for anytime
version)



Relative Exponential Weighing Algorithm (REX3)

a=1 b=3 x> xp
Weights at t = 2

e Weights spike at arms
who win the duel
regularly.
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4.
5:

10:
11:

12:
13:

Parameters: Real v € (0,0.5)
Inltlallzatlon w; (1 ) =1 for

for/: ,...,Kdo
pi(t) < "
~) —wilt y
1= T x
end for
Pull

a, b~ (pl( ) ..... pK(t)).
Get relative feedback
de{-1,0,+1}
if a # b then
yo_d
wo(t + 1) <= w,(t) - ek 2

_xd

wp(t+1) < wp(t)-e K2

end if
Update ~y (for anytime
version)



Upper bound for REX3

Theorem

Gmax — E(G,g) < % In(K) +~7
where
T=-¢e -EG,; — (4—e) EGunif

Corollary

1 /Kin(K)

2 T

expected cumulative regret of REX3

is bounded by O <\/K In(K) T).

When v = min , the

e Upper bound of REX3 = Upper
bound of EXP3.

e Optimality:

REX3 ~n Q (W)
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Analysis of REX3

Main challenge of dueling bandits: no direct way to estimate
absolute reward values like EXP3.

In EXP3, since we can observe absolute feedback (x,), the
estimator X;(t) is defined as follows:

x5(t)
Pa(t)

The division by p, ensures that more “surprising” (i.e. lower
pa) the observed reward x,, higher is the estimator.

Ri(t)=[i = 4]

Ensures that their expectations are equal to the actual
rewards for each action i.e.

E[%(t)] = xi(t)
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Analysis of REX3

Feedback in dueling bandits is relative (x; — xp) instead of
absolute (x,), so the use of EXP3 estimator is not possible.

To overcome this challenge, we introduced a new estimator
6,'(1‘).

We define &;(t) in the following way:

() = [ = a2 22y = e )

Pa 2pp

It gives us a way to provide weight update rule in a concise form:
d

Weight update rule earlier 100 wy(t+ 1) < wa(t) - e%ﬂ
_d
11 wp(t+ 1) < wp(t) - e

xR

2pp
Weight update rule using &(t) Vi wi(t+ 1) = w;(t) - ex ()
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Key element of the analysis

Lemma for expectation of &(t)
E [éi(t)l(ah bl)? 0og (at—l’ bt—l)] = Xi(t) - anp(t)xa(t)

e The expectation of this estimator is the expected
instantaneous regret of the algorithm against arm 1.

e j.e. the difference between the gain of arm i and the expected
gain according to algorithm’s current state of knowledge p(t).

e This is intuitively what we want from an estimator in a
dueling bandit problem.
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Sketch of proof

The general structure of the proof is similar to the proof of EXP3
[2] except the difference in expectation of the &;(t) estimator.
Let Wi = wi(t) + wa(t) + - + wi(t).

K
Wit Pi(t) = /K (v/k)e(t)
- - = — 7 ' e i 1
™ ; T (1)

As in EXP3, we simplify, take the logarithm and sum over t. We
get for any j:

T 2 2
Y. 74 /K (e —2)v*/K
&t —-Ihh(KV — My +—FF M
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Sketch of proof (continued)

By taking the expectation over the algorithm’s randomization, we
obtain for any j:

.
Z %Ewpej(t) —In(K) <

”KZEle e—2h 2/KZE~pMz @
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Sketch of proof (continued)

From Lemma 13, expectation of My, expectation of My, and by
definition of G max, EG,g, and EG pjf, the inequality (2) rewrites
into:
KinK
Gmax - IE(Galg - < 1
(e—2)y
2(1 =)

f_y ~y (EGalg - IED(G'unif)

+ (E(Galg + IE)(Gjunif)

Assuming v < % we finally obtain:

KinK
Gmax - IE)Galg < "

+ v (e]EGa/g — (4—6) EGunif)
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Experiments

dy Ranking ds
dy dq dy
d4\d5 ds
dr d / ds
ds ds / ds
dy
dg

o We used interleaved filtering on real datasets from
information retrieval systems.

e We considered the following state of the art algorithms: BTM
[6] (explore-then-exploit setting), SAVAGE [5], RUCB [7], and
SPARRING coupled with ExP3 [1] and Random as baseline.

e The experiments showed that REX3 and especially its
anytime version are competitive solutions for the dueling
bandit problem.

17



Experiments

[ —+ Random Policy Vi ]
BTM (y = 1.1, fixed T) ¥ ]
- Sparring+EXP3 (fixed )

SAVAGE (ﬁxed T) =
Rex3 (g = 1/2, fixed ) -=x==x=="
Rex3 g = 1/10 fixed T')

RUCB (« = 0.51, anytime)

b -a- Rex3 (adaptlve ,anyhme) //’
104 / =
- ./" |
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Figure 1: Average regret and accuracy plots on ARXIV dataset (6
rankers). Time and regret scales are logarithmic.
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Experiments

106 < 18 T T T
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I 4~ Rex3
t 14 L o= Rex3 (adaptive) |

10°

cumulative Condorcet regret

,_.
1)
2

-

o
3
T

cumulative Condorcet regret x10~ at T'

accuracy
e © o ¢

o N oA O
T

20 40 60 80 100 120 140
K (MSLR rankers)

Figure 2: On the left: average regret and accuracy plots on MSLR30K
with navigational queries (K = 136 rankers). On the right: same dataset,
fixed T = 10° and K = 4 - 136. Colored areas show minimal and
maximal values.
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Simulations on non-stationary rewards

10° ¢
£ Random Policy

Sparrmg FUCB
R%arrm +EXP3 tor T=10" ":ﬁ*‘w*W

Rex3 for T = 10 "“*‘"“
- Rex3 (adaptive v)

10t b

10° b

cumulative bandit regret

accuracy

gap A

102 10% 10* 10° 108 107

time

Figure 3: K =10, gains from Bernoulli distributions. Best arm’s gain is

1/2 4+ A(t) with A(t) = /K - log(t)/t. Others are stationary with a
mean of 1/2.
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