
Multi-Armed Bandits with Relative Feedback

Pratik Gajane

Orange labs & INRIA SequeL

7th June 2017
Statistical Natural Language Processing Colloquium,

Heidelberg University

1



Outline

1. Dueling bandits

2. Analysis of the algorithm

3. Experiments

2



Motivation for the dueling bandit problem

• In many practical situations, relative feedback is available,
and not absolute feedback.

• Eg: “I like Tennis more than Basketball” instead of “I value
tennis at 48/50 and Basketball at 33/50”.

Ranking A Ranking B
Interleaved
Ranking

• Information retrieval systems where
users provide implicit feedback about
the provided results.

• Interleaved filtering, proposed by
Radlinski et al. [3], interleaves the
rankings to remove the bias.

• Inability of classical MAB to deal with
relative feedback motivates new
problem setting.

3



The dueling bandit problem

• A variation of the classical Multi-Armed Bandit (mab) to deal
with relative feedback.

• At each time period, the
learner selects two arms.

• The learner only sees the
outcome of the duel between
the selected arms.

• The learner receives a function
of the rewards of the selected
arms.

4



Formulating the duelings bandits

• Matrix-based formulation
I preference matrix contains Pa,b = unknown probability with

which a wins the duel arewardst b.




1 2 ··· K

1 1/2 P1,2 P1,K

2 P2,1 1/2 P2,K
...

. . .

K PK ,1 PK ,2 1/2




• Utility-based formulation
I At each time t, a utility xa(t) is associated with each arm a.
I When arms a and b are selected,

xa(t) > xb(t) : a wins the duel

xa(t) < xb(t) : b wins the duel

xa(t) = xb(t) :

{
a wins the duel with probability 0.5

b wins the duel with probability 0.5

5



Utility-based adversarial dueling bandits

• State of the art dueling bandits algorithms are for stochastic
bandits. → arm rewards are independent and identically
distributed (iid).

• Adversarial dueling bandits allow us to drop these
assumptions.

• In our setting, the adversary chooses a sequence of utility
vectors x(t) = (x1(t), . . . , xK (t)) ∈ [0, 1]K for t = 1, . . . ,T .

• At each time t, the learner chooses two arms a and b,
Instantaneous reward = xa(t)+xb(t)

2 (hidden)

Feedback

(binary rewards)

= xa(t)− xb(t)





−1 if xa(t) < xb(t)

0 if xa(t) = xb(t)

+1 if xa(t) > xb(t)

6



Utility-based adversarial dueling bandits

• State of the art dueling bandits algorithms are for stochastic
bandits. → arm rewards are independent and identically
distributed (iid).

• Adversarial dueling bandits allow us to drop these
assumptions.

• In our setting, the adversary chooses a sequence of utility
vectors x(t) = (x1(t), . . . , xK (t)) ∈ {0, 1}K for t = 1, . . . ,T .

• At each time t, the learner chooses two arms a and b,
Instantaneous reward = xa(t)+xb(t)

2 (hidden)

Feedback (binary rewards) =





−1 if xa(t) < xb(t)

0 if xa(t) = xb(t)

+1 if xa(t) > xb(t)

6



Lower bound for any dueling bandit algorithm

Theorem

For K ≥ 2 and T ≥ K , there exists a distribution over assignments
of rewards such that the expected cumulative regret of any
utility-based dueling bandit algorithm cannot be less than
Ω(
√
KT ).

Gmax - Maximum possible reward for a single-arm strategy
E(Galg ) - Expected reward earned by the algorithm’s strategy
Gmax − E(Galg ) - Expected cumulative regret

• We proved this by reduction to classical bandits as suggested
in Ailon et al. [1]

• Lower bound for adversarial dueling bandits = lower bound of
classical adversarial bandits = Ω(

√
KT )

• Data dependent lower bound for stochastic bandits =
Ω(K log(T )/∆)

7



Relative Exponential Weighing Algorithm (REX3)

• Non-trivial extension of
exp3 [2] to the dueling
bandits with binary rewards.

• Assigns a weight to each
arm. Higher weight =⇒
higher selection probability.

• d = xa − xb =



−1 if xa < xb

0 if xa = xb

+1 if xa > xb

• For anytime version, a kind
of “doubling trick” (Seldin
et al. [4]).

1: Parameters: Real γ ∈ (0, 0.5)
2: Initialization: wi (1) = 1 for

i = 1, . . . ,K .
3: for t = 1, 2, . . . do

4: for i = 1, . . . ,K do
5: pi (t)←

(1− γ) wi (t)∑K
j=1 wj (t)

+ γ
K

6: end for
7: Pull

a, b ∼ (p1(t), . . . , pK (t)).
8: Get relative feedback

d ∈ {−1, 0,+1}
9: if a 6= b then

10: wa(t + 1)← wa(t) · e γ
K

d
2pa

11: wb(t + 1)← wb(t) · e−
γ
K

d
2pb

12: end if
13: Update γ (for anytime

version)
14: end for

8



Relative Exponential Weighing Algorithm (REX3)

Weights at t = 0
(γ = 0.4)

• Update weight according
to (relative) feedback.

1: Parameters: Real γ ∈ (0, 0.5)
2: Initialization: wi (1) = 1 for

i = 1, . . . ,K .
3: for t = 1, 2, . . . do

4: for i = 1, . . . ,K do
5: pi (t)←

(1− γ) wi (t)∑K
j=1 wj (t)

+ γ
K

6: end for
7: Pull

a, b ∼ (p1(t), . . . , pK (t)).
8: Get relative feedback

d ∈ {−1, 0,+1}
9: if a 6= b then

10: wa(t + 1)← wa(t) · e γ
K

d
2pa

11: wb(t + 1)← wb(t) · e−
γ
K

d
2pb

12: end if
13: Update γ (for anytime

version)
14: end for
9



Relative Exponential Weighing Algorithm (REX3)

a = 1, b = 2, xa > xb
Weights at t = 1

• Weight may decrease
unlike EXP3.

1: Parameters: Real γ ∈ (0, 0.5)
2: Initialization: wi (1) = 1 for

i = 1, . . . ,K .
3: for t = 1, 2, . . . do

4: for i = 1, . . . ,K do
5: pi (t)←

(1− γ) wi (t)∑K
j=1 wj (t)

+ γ
K

6: end for
7: Pull

a, b ∼ (p1(t), . . . , pK (t)).
8: Get relative feedback

d ∈ {−1, 0,+1}
9: if a 6= b then

10: wa(t + 1)← wa(t) · e γ
K

d
2pa

11: wb(t + 1)← wb(t) · e−
γ
K

d
2pb

12: end if
13: Update γ (for anytime

version)
14: end for
9



Relative Exponential Weighing Algorithm (REX3)

a = 1, b = 3, xa > xb
Weights at t = 2

• Weights spike at arms
who win the duel
regularly.

1: Parameters: Real γ ∈ (0, 0.5)
2: Initialization: wi (1) = 1 for

i = 1, . . . ,K .
3: for t = 1, 2, . . . do

4: for i = 1, . . . ,K do
5: pi (t)←

(1− γ) wi (t)∑K
j=1 wj (t)

+ γ
K

6: end for
7: Pull

a, b ∼ (p1(t), . . . , pK (t)).
8: Get relative feedback

d ∈ {−1, 0,+1}
9: if a 6= b then

10: wa(t + 1)← wa(t) · e γ
K

d
2pa

11: wb(t + 1)← wb(t) · e−
γ
K

d
2pb

12: end if
13: Update γ (for anytime

version)
14: end for
9



Upper bound for REX3

Theorem

Gmax − E(Galg ) ≤ K
γ ln(K ) + γτ

where
τ = e · EGalg − (4−e) · EGunif

Corollary

When γ = min

{
1
2 ,

√
K ln(K)

τ

}
, the

expected cumulative regret of rex3

is bounded by O
(√

K ln(K )T
)
.

• Upper bound of rex3 = Upper
bound of exp3.

• Optimality:

rex3 ∼ln Ω
(√

KT
)

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

cu
m

ul
at

iv
e

C
on

do
rc

et
re

gr
et
×
10

−
3

γ

γ∗

Random on NP2004
Random on MSLR Inf. (K=64)
Random on MSLR Nav. (K=64)
Rex3 on NP2004
Rex3 on MSLR Inf (K=64)
Rex3 on MSLR Nav. (K=64)
(K ln (K)/(2γ) + γ · e · T/2) /2
(K ln (K)/(2γ) + γ · e · T/4) /2

10



Analysis of REX3

• Main challenge of dueling bandits: no direct way to estimate
absolute reward values like EXP3.

• In EXP3, since we can observe absolute feedback (xa), the
estimator x̂i (t) is defined as follows:

x̂i (t) = Ji = aK
xa(t)

pa(t)

• The division by pa ensures that more “surprising” (i.e. lower
pa) the observed reward xa, higher is the estimator.

• Ensures that their expectations are equal to the actual
rewards for each action i.e.

E[x̂i (t)] = xi (t)

11



Analysis of REX3

• Feedback in dueling bandits is relative (xa − xb) instead of
absolute (xa), so the use of EXP3 estimator is not possible.

• To overcome this challenge, we introduced a new estimator
ĉi (t).

• We define ĉi (t) in the following way:

ĉi (t) = Ji = aK
(xa − xb)

2pa
+ Ji = bK

(xb − xa)

2pb

• It gives us a way to provide weight update rule in a concise form:

Weight update rule earlier 10: wa(t + 1)← wa(t) · e
γ
K

d
2pa

11: wb(t + 1)← wb(t) · e−
γ
K

d
2pb

Weight update rule using ĉi (t) ∀i wi (t + 1) = wi (t) · e γ
K
ĉi (t)

12



Key element of the analysis

Lemma for expectation of ĉi(t)

E [ĉi (t)|(a1, b1), .., (at−1, bt−1)] = xi (t)− Ea∼p(t)xa(t)

• The expectation of this estimator is the expected
instantaneous regret of the algorithm against arm i .

• i.e. the difference between the gain of arm i and the expected
gain according to algorithm’s current state of knowledge p(t).

• This is intuitively what we want from an estimator in a
dueling bandit problem.

13



Sketch of proof

The general structure of the proof is similar to the proof of exp3
[2] except the difference in expectation of the ĉi (t) estimator.
Let Wt = w1(t) + w2(t) + · · ·+ wK (t).

Wt+1

Wt
=

K∑

i=1

pi (t)− γ/K
1− γ e(γ/K)ĉi (t) (1)

As in exp3, we simplify, take the logarithm and sum over t. We
get for any j :

T∑

t=1

γ

K
ĉj(t)− ln(K ) ≤ γ2/K

1− γM1 +
(e − 2)γ2/K

1− γ M2

14



Sketch of proof (continued)

By taking the expectation over the algorithm’s randomization, we
obtain for any j :

T∑

t=1

γ

K
E∼p ĉj(t)− ln(K ) ≤

γ2/K

1− γ
T∑

i=t

E∼pM1 +
(e − 2)γ2/K

1− γ
T∑

i=t

E∼pM2 (2)

15



Sketch of proof (continued)

From Lemma 13, expectation of M1, expectation of M2, and by
definition of Gmax , EGalg , and EGunif , the inequality (2) rewrites
into:

Gmax − EGalg −
K lnK

γ
≤ γ

1− γ (EGalg − EGunif )

+
(e−2)γ

2(1− γ)
(EGalg + EGunif )

Assuming γ ≤ 1
2 we finally obtain:

Gmax − EGalg ≤
K lnK

γ
+ γ (eEGalg − (4−e)EGunif )

16



Experiments

Ranking A Ranking B
Interleaved
Ranking

• We used interleaved filtering on real datasets from
information retrieval systems.

• We considered the following state of the art algorithms: BTM
[6] (explore-then-exploit setting), savage [5], rucb [7], and
Sparring coupled with exp3 [1] and Random as baseline.

• The experiments showed that REX3 and especially its
anytime version are competitive solutions for the dueling
bandit problem.

17



Experiments

103

104

105

cu
m

ul
at

iv
e

C
on

do
rc

et
re

gr
et

Random Policy
BTM (γ = 1.1, fixed T )
Sparring+exp3 (fixed T )
CSAVAGE (fixed T )
Rex3 (g = 1/2, fixed T )
Rex3 (g = 1/10, fixed T )
RUCB (α = 0.51, anytime)
Rex3 (adaptive γ, anytime)

0

0.2

0.4

0.6

0.8

1

103 104 105 106 107 108

ac
cu

ra
cy

time

Figure 1: Average regret and accuracy plots on arxiv dataset (6
rankers). Time and regret scales are logarithmic.

18



Experiments

104

105

106
cu

m
ul

at
iv

e
C

on
do

rc
et

re
gr

et

0

0.2

0.4

0.6

0.8

1

105 106 107 108

ac
cu

ra
cy

time

0

2

4

6

8

10

12

14

16

18

20 40 60 80 100 120 140

cu
m

ul
at

iv
e

C
on

do
rc

et
re

gr
et
×1

0−
3

at
T

=
10

5

K (mslr rankers)

Random
CSAVAGE
RUCB
Sparring+exp3
Rex3
Rex3 (adaptive)

Figure 2: On the left: average regret and accuracy plots on mslr30k
with navigational queries (K = 136 rankers). On the right: same dataset,
fixed T = 105 and K = 4 - 136. Colored areas show minimal and
maximal values.

19



Simulations on non-stationary rewards

102

103

104

105

cu
m

ul
at

iv
e

ba
nd

it
re

gr
et Random Policy

Sparring+ucb
Sparring+exp3 for T = 107

RUCB (α = 0.51)
Rex3 for T = 107

Rex3 (adaptive γ)

0
0.2
0.4
0.6
0.8

1

ac
cu

ra
cy

0
0.1
0.2
0.3
0.4
0.5

102 103 104 105 106 107

ga
p

∆

time

∆(t) =
√

K· ln (t)
t

Figure 3: K = 10, gains from Bernoulli distributions. Best arm’s gain is
1/2 + ∆(t) with ∆(t) =

√
K · log(t)/t. Others are stationary with a

mean of 1/2.

20



References I

N. Ailon, Z. Shay Karnin, and T. Joachims.
Reducing dueling bandits to cardinal bandits.
In ICML 2014, volume 32 of JMLR Proceedings, pages
856–864, 2014.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E
Schapire.
The nonstochastic multiarmed bandit problem.
SIAM Journal on Computing, 32(1):48–77, 2002.

F. Radlinski and T. Joachims.
Active exploration for learning rankings from clickthrough
data.
In KDD 2007, pages 570–579. ACM, 2007.

20



References II

Yevgeny Seldin, Csaba Szepesvári, Peter Auer, and Yasin
Abbasi-Yadkori.
Evaluation and analysis of the performance of the
exp3 Algorithm in stochastic environments.
In EWRL, volume 24 of JMLR Proceedings, pages 103–116,
2012.

T. Urvoy, F. Clerot, R. Féraud, and S. Naamane.
Generic exploration and K-armed voting bandits.
In ICML 2013, volume 28 of JMLR Proceedings, pages 91–99,
2013.

Y. Yue and T. Joachims.
Beat the mean bandit.
In ICML 2011, pages 241–248. Omnipress, 2011.

21



References III

Masrour Zoghi, Shimon Whiteson, Remi Munos, and Maarten
de Rijke.
Relative upper confidence bound for the k-armed dueling
bandit problem.
In ICML 2014, volume 32 of JMLR Proceedings, pages 10–18,
2014.

22


	Dueling bandits
	Analysis of the algorithm
	Experiments

