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ICML 2018 Tutorial : Defining and designing fair algo-
rithms by Sam Corbett-Davies and Sharad Goel.

So long as | do not know what the just is, | shall
hardly know whether it is a virtue or not.
Socrates



What? How? Why?

e Our Task: Analyze fairness formalizations considered in
ML so far.
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What? How? Why?

e Our Task: Analyze fairness formalizations considered in
ML so far.

e Our Method: Juxtapose the formalizations in ML with
their corresponding theories in Social Sciences.
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e Our Task: Analyze fairness formalizations considered in
ML so far.

e Our Method: Juxtapose the formalizations in ML with
their corresponding theories in Social Sciences.

. Our Objective: Start a discussion and propose newer fair-
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Mathematical Formulation

. Set of individuals i.e. population

. Protected attributes e.g. race, gender etc
: Remaining attributes

: Set of outcomes

< N> X

For individual x; € X, let true outcome (label) be y; € Y

Predictor H : X — Y such that H(x;) is the predicted
outcome for individual x;

Group-conditional predictor H = {#Hs} for every S C X
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What is Fair?

e Parity or preference? : Statistical Parity or Social Pref-
erence?

e Treatment or impact? : A property of the process or
of its results?

Table 1: The surveyed formalizations of fairness

Parity Preference

Treatment Unawareness Preferred treatment
Counterfactual measures

Group fairness
Impact Individual fairness Preferred impact
Equality of opportunity
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’ Definition
Protected attributes are not explicitly used in prediction.

Fairness through
Unawareness

e Not sufficient to avoid discrimination.
e ~ "“Blind" approach to counter discrimination.

e Various discriminatory practices following race-blind ap-
proach Bonilla-Silva (2013) [3], Taslitz (2007) [13].

e Race-blind approach is less efficient than race-conscious
approach Fryer (2008) [5].

e Alternatively, some studies show a blind approach can
work Glodin (2000) [6].
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dependent on A constant will not change the distribution of
H.
Wrammgcteat e Given Z=zand A=a, forall y and a # &/,

P{Haca =y|Z=2z,A=a} =P{Hp—o = y|Z=2,A=a
where Ha—, = outcome of H if A had taken value a.

e Introduced by Kusner et al. [9]. Similar measure intro-
duced independently by Kilbertus et al. [8].

e ~ Counterfactual reasoning given by Lewis (1973) [10]

e Research to indicate that counterfactual reasoning is sus-
ceptible to hindsight bias and outcome bias.

e Some argue that counterfactual reasoning may negatively
influence identifying causality.

8
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Group Fairness

Group Fairness

Definition
Prob. of an individual from one group getting a particular

outcome & Prob. of an individual from another group
getting same outcome.

e Equivalent to statistical and demographic parity.

Independent of “ground truth”.

~ Collectivist egalitarianism from distributive justice.

Biggest implementation = affirmative action.

e Arguments have been made for and against affirmative
action Weisskopf (2004) [14].
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Definition

Similar individuals get similar outcome.

Mathematically, H(x;) = H(x;) | d(xi, x;) = 0 where is a
distance metric for individuals.

Individual Fairness

~ Individualist egalitarianism from distributive justice.

Distance metric is critical to ensure non-discrimination.

In some domains, reliable distance metric may be un-
available.

10
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True positive rate should be the same for all the groups.

o P{H(xi)) =1]yi =1,x € S} =P{H(x;)) =1|y; =
1,x; e X\ S}

e Disparate mistreatment : Equivalence of misclassification
rates across the groups.

e ~ Equality of Opportunity by Rawls (1971) [11].

e Argument that it cannot deal with stunted ambition and
selection by bigotry Arneson (1999) [1].

Equality of
Opportunity

e Attributes like gender and race not deemed to be affect-
ing an individual's life prospects while numerous surveys
conclude otherwise.

11



R Preference-based Fairness
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o e Definition
pe“c"hyekn‘?'fkiy (Preferred treatment) A group-conditional predictor in which
each group receives more benefit from their respective
predictor.
Definition

(Preferred impact) H has preferred impact compared to H’
if H offers at-least as much benefit as H' for all the groups.

Preference-based
Fairness

In certain domains, no single universally accepted bene-
ficial outcome.
e ~ envy-freeness Arnsperger (1994) [2].

Freedom from envy neither necessary nor sufficient for
fairness (Holocombe 1977 [7])
Envy-freeness formally expressed by Pareto-efficiency.

Finding Pareto-efficient solutions computationally hard.
12
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Equality of Resources

Definition
(Equality of resources) Unequal distribution of benefits fair

when it results from intentional decisions and actions.
(Dworkin (1981) [4])

e Ambition-sensitive
e Endowment-insensitive

e In the 2nd property, it differs from equality of opportunity.

13
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Equality of Capability of Functioning

Definition
(Equality of capability of functioning) In order to equalize

capabilities, people should be compensated for their unequal
powers to convert opportunities into functionings. (Sen

(1992) [12])

e Functionings = various states of existence and activities
that an individual can undertake.

e Calls for addressing inequalities due to social endowments
(e.g. gender) as well as natural endowments (e.g. sex).

e Used in the foundations of human development paradigm
by the United Nations.

e High informational requirement and difficult to express
mathematically.

14



On Formalizing
Fairness in
Prediction with
Machine Learning

Pratik Gajane ,
Mykola
Pechenizkiy
Introduction

Past Notions

Prospective
Notions

Summary and
Further Directions

References

Summary and Further Directions

Juxtaposed ML fairness formlaizatioons with theories from
distributive justice.

Critique and analysis from the social sciences literature.

Nominate two notions from the social sciences literature
as prospective ML fairness formalizations.

Use of social science literature while choosing fairness
formalizations in particular domains.

Fair prediction cannot be achieved without considering
social issues such as unequal access to resources and so-
cial conditioning.

Acknowledge their impact and attempt to incorporate
them in fairness formalizations.

15



Thank you all.
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