ADVANCING BEHAVIORAL SCIENCE THROUGH AI + DIGITAL HEALTH

RL-Driven Pain Care Recommendations – Dr. Pratik Gajane

MICHIGAN INSTITUTE FOR CLINICAL & HEALTH RESEARCH

UNIVERSITY OF MICHIGAN

May 21, 2024

▶ Reinforcement learning (RL) to deliver personalized CBT for chronic pain.

- ▶ Reinforcement learning (RL) to deliver personalized CBT for chronic pain.
- In this presentation, we will see
 - how RL-based results display disparities w.r.t. sensitive attributes (gender, race), and
 - how to avoid such disparities.

- * University of Michigan, Ann Arbor, USA.
- [†] Eindhoven University of Technology, Eindhoven, the Netherlands.

 $2 \, / \, 10$

- ▶ Reinforcement learning (RL) to deliver personalized CBT for chronic pain.
- In this presentation, we will see
 - how RL-based results display disparities w.r.t. sensitive attributes (gender, race), and
 - how to avoid such disparities.
- Latest version of this work: Investigating Gender Fairness in Machine Learning-driven Personalized Care for Chronic Pain (arxiv.org/abs/2402.19226) .

- \ast University of Michigan, Ann Arbor, USA.
- [†] Eindhoven University of Technology, Eindhoven, the Netherlands.

2/10

- ▶ Reinforcement learning (RL) to deliver personalized CBT for chronic pain.
- In this presentation, we will see
 - how RL-based results display disparities w.r.t. sensitive attributes (gender, race), and
 - how to avoid such disparities.
- Latest version of this work: Investigating Gender Fairness in Machine Learning-driven Personalized Care for Chronic Pain (arxiv.org/abs/2402.19226) .
- Collaborators for this work :
 - John D. Piette*,
 - Sean Newman*, and
 - Mykola Pechenizkiy[†].
- * University of Michigan, Ann Arbor, USA.
- [†] Eindhoven University of Technology, Eindhoven, the Netherlands.

CBT Options

Pre-recorded message from a therapist 15-minute in-person session with a therapist 45-minute in-person session with a therapist

In each patient interaction, the algorithm

MICHIGAN INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN E-HEALTH AND ARTIFICIAL INTELLIGENCE

3/10

CBT Options

Pre-recorded message from a therapist 15-minute in-person session with a therapist 45-minute in-person session with a therapist

- In each patient interaction, the algorithm
 - Observes relevant patient information (features);

MICHIGAN INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

CBT Options

Pre-recorded message from a therapist 15-minute in-person session with a therapist 45-minute in-person session with a therapist

- In each patient interaction, the algorithm
 - Observes relevant patient information (features);
 - Uses features to decide which CBT option to recommend;

CBT Options

Pre-recorded message from a therapist 15-minute in-person session with a therapist 45-minute in-person session with a therapist

- In each patient interaction, the algorithm
 - Observes relevant patient information (features);
 - Uses features to decide which CBT option to recommend;
 - Receives a reward (a number expressing the efficacy of recommended CBT option).

CBT Options

Pre-recorded message from a therapist 15-minute in-person session with a therapist 45-minute in-person session with a therapist

- In each patient interaction, the algorithm
 - Observes relevant patient information (features);
 - Uses features to decide which CBT option to recommend;
 - Receives a reward (a number expressing the efficacy of recommended CBT option).
- Earlier patient interactions (features, recommendation, reward) used to select recommendations in the subsequent interactions.

CBT Options

Pre-recorded message from a therapist 15-minute in-person session with a therapist 45-minute in-person session with a therapist

- In each patient interaction, the algorithm
 - Observes relevant patient information (features);
 - Uses features to decide which CBT option to recommend;
 - Receives a reward (a number expressing the efficacy of recommended CBT option).
- Earlier patient interactions (features, recommendation, reward) used to select recommendations in the subsequent interactions.
- Performance criterion: Utility = Average received reward.
 High utility reflects effective CBT recommendations.

3/10

▶ A recent clinical trial [1] showed that RL-based CBT treatments led to

high utility (leading to improved patient outcomes) and,

effective allocation of scarce clinical resources.

[1] Piette et al. Patient-centered pain care using artificial intelligence and mobile health tools: A randomized comparative effectiveness trial, 182(9):975, September 2022a.

4/10

TE E·HEALTH AND

MICHIGAN INST

- ▶ A recent clinical trial [1] showed that RL-based CBT treatments led to
 - high utility (leading to improved patient outcomes) and,
 - effective allocation of scarce clinical resources.
- (RL) Algorithms can introduce/amplify disparities w.r.t. sensitive attributes (gender, race, etc)!

[1] Piette et al. Patient-centered pain care using artificial intelligence and mobile health tools: A randomized comparative effectiveness trial, 182(9):975, September 2022a.

4/10

- A recent clinical trial [1] showed that RL-based CBT treatments led to
 inproved patient outcomes) and,
 - effective allocation of scarce clinical resources.
- (RL) Algorithms can introduce/amplify disparities w.r.t. sensitive attributes (gender, race, etc)!
- We investigated gender disparities in the utility of the RL algorithm for 50000 patient interactions based on [2].

[1] Piette et al. Patient-centered pain care using artificial intelligence and mobile health tools: A randomized comparative effectiveness trial, 182(9):975, September 2022a.

[2] Dataset #2 for Piette et al.: Data for a Reinforcement Learning Intervention to Treat Chronic Pain. $\frac{4}{10}$

- A recent clinical trial [1] showed that RL-based CBT treatments led to
 inproved patient outcomes) and,
 - effective allocation of scarce clinical resources.
- (RL) Algorithms can introduce/amplify disparities w.r.t. sensitive attributes (gender, race, etc)!
- We investigated gender disparities in the utility of the RL algorithm for 50000 patient interactions based on [2].

[1] Piette et al. Patient-centered pain care using artificial intelligence and mobile health tools: A randomized comparative effectiveness trial, 182(9):975, September 2022a.

[2] Dataset #2 for Piette et al.: Data for a Reinforcement Learning Intervention to Treat Chronic Pain. $\frac{4}{10}$

MICHIGAN INSTITUT FOR DATA SCIENCE UNIVERSITY OF MICHIGA

- A recent clinical trial [1] showed that RL-based CBT treatments led to
 inproved patient outcomes) and,
 - effective allocation of scarce clinical resources.
- (RL) Algorithms can introduce/amplify disparities w.r.t. sensitive attributes (gender, race, etc)!
- We investigated gender disparities in the utility of the RL algorithm for 50000 patient interactions based on [2].

[1] Piette et al. Patient-centered pain care using artificial intelligence and mobile health tools: A randomized comparative effectiveness trial, 182(9):975, September 2022a.

[2] Dataset #2 for Piette et al.: Data for a Reinforcement Learning Intervention to Treat Chronic Pain. $\frac{4}{10}$

MICHIGAN INSTITUT FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

Patient Features

Pain interference 1 Session Number CBT skill practice this week Sleep quality this week Pain interference 2 % days this week with steps goal met Pain intensity change Sleep duration this week

MICHIGAN INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

Patient Features

Pain interference 1 Session Number CBT skill practice this week Sleep quality this week Pain interference 2 % days this week with steps goal met Pain intensity change Sleep duration this week

Feature Selection : Use a subset of features.

IGAN INSTITUTE

5/10

- Patient Features
 - Pain interference 1 Session Number CBT skill practice this week Sleep quality this week

Pain interference 2 % days this week with steps goal met Pain intensity change Sleep duration this week

Feature Selection : Use a subset of features.

We evaluated the RL algorithm with 22 feature combinations, and almost all resulted in gender disparities (p < 0.05 and Cohen's d around 0.3).</p>

Patient Features
 Pain interference 1
 Pain interference 2
 Session Number
 % days this week with steps goal met
 CBT skill practice this week
 Sleep quality this week
 Sleep duration this week
 Optimal Features

`<mark>`</mark>?'-

Feature Selection : Use a subset of features.

- We evaluated the RL algorithm with 22 feature combinations, and almost all resulted in gender disparities (p < 0.05 and Cohen's d around 0.3).</p>
- Results using Optimal Features
 - Utility for men : Highest among all combinations Utility for women : Highest among all combinations

Patient Features
 Pain interference 1
 Pain interference 2
 Session Number
 % days this week with steps goal met
 CBT skill practice this week
 Sleep quality this week
 Sleep duration this week
 Optimal Features

`<mark>`</mark>?'-

Feature Selection : Use a subset of features.

- We evaluated the RL algorithm with 22 feature combinations, and almost all resulted in gender disparities (p < 0.05 and Cohen's d around 0.3).</p>
- Results using Optimal Features
 - Utility for men : Highest among all combinations Utility for women : Highest among all combinations
 - Utility for women $\overset{\text{not statistically different}}{\approx}$ utility for men.

5/10

•	Patient Features	
	Pain interference 1	Pain interference 2
	Session Number	% days this week with steps goal met
	CBT skill practice this week	Pain intensity change
	Sleep quality this week	Sleep duration this week
Optimal Features		

`<mark>`</mark>?'-

Feature Selection : Use a subset of features.

- We evaluated the RL algorithm with 22 feature combinations, and almost all resulted in gender disparities (p < 0.05 and Cohen's d around 0.3).</p>
- Results using Optimal Features
 - Utility for men : Highest among all combinations Utility for women : Highest among all combinations
 - Utility for women not stati

 $\overset{\rm not \ statistically \ different}{\approx}$ utility for men.

 If the RL algorithm makes recommendations based on Optimal Features High utility Yes

Equity w.r.t. gender Yes

Objective: Recommend CBT treatments using Optimal Features.

MICHIGAN INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

Objective: Recommend CBT treatments using Optimal Features.

1 The identity of Optimal Features may be unknown.

MICHIGAN INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

Objective: Recommend CBT treatments using Optimal Features.

- **1** The identity of Optimal Features may be unknown.
- Optimal Features may differ across patient populations.

MICHIGAN INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

Objective: Recommend CBT treatments using Optimal Features.

- The identity of Optimal Features may be unknown.
- **?** Optimal Features may differ across patient populations.

- In each patient interaction, the algorithm
 - Observes features;
 - Feature selection : Selects a subset of features;

MICHIGAN INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

Objective: Recommend CBT treatments using Optimal Features.

- **1** The identity of Optimal Features may be unknown.
- **?** Optimal Features may differ across patient populations.

- In each patient interaction, the algorithm
 - Observes features;
 - Feature selection : Selects a subset of features;
 - Uses selected features to decide which treatment to recommend;

6/10

Objective: Recommend CBT treatments using Optimal Features.

- The identity of Optimal Features may be unknown.
- Optimal Features may differ across patient populations.

- In each patient interaction, the algorithm
 - Observes features;
 - Feature selection : Selects a subset of features;
 - Uses selected features to decide which treatment to recommend;
 - Receives a reward.
- Earlier patient interactions (features, recommendation, reward) used to select subsequent recommendations and for feature selection.

6/10

- Evaluated our RL algorithm on 50000 patient interactions based on [2].
- Our algorithm used Optimal Features to make CBT recommendations for 86% of patient interactions.

[2] Dataset #2 for Piette et al.: Data for a Reinforcement Learning Intervention to Treat Chronic Pain.

N INSTITUTE A SCIENCE

- Evaluated our RL algorithm on 50000 patient interactions based on [2].
- Our algorithm used Optimal Features to make CBT recommendations for 86% of patient interactions.
- Relatively infrequent use of Optimal Features initially (*Cold start*).
 Initial patient interactions possibly receiving poor recommendations.

[2] Dataset #2 for Piette et al.: Data for a Reinforcement Learning Intervention to Treat Chronic Pain.

STITUTE

- Evaluated our RL algorithm on 50000 patient interactions based on [2].
- Our algorithm used Optimal Features to make CBT recommendations for 86% of patient interactions.
- Relatively infrequent use of Optimal Features initially (*Cold start*).
 ⇒ Initial patient interactions possibly receiving poor recommendations.
 Input clinicians' domain knowledge about which features are likely to be optimal.

[2] Dataset #2 for Piette et al.: Data for a Reinforcement Learning Intervention to Treat Chronic Pain.

- Evaluated our RL algorithm on 50000 patient interactions based on [2].
- Our algorithm used Optimal Features to make CBT recommendations for 86% of patient interactions.
- Relatively infrequent use of Optimal Features initially (*Cold start*).
 initial patient interactions possibly receiving poor recommendations.
 Input clinicians' domain knowledge about which features are likely to be optimal.
 - This led to 17% improvement in our algorithm's frequency of using Optimal Features initially (first decile of interactions).

[2] Dataset #2 for Piette et al.: Data for a Reinforcement Learning Intervention to Treat Chronic Pain.

Can provide CBT recommendations using Optimal Features in real-time.

MICHIGAN INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

- Can provide CBT recommendations using Optimal Features in real-time.
- Data-driven and automated

Can provide CBT recommendations using Optimal Features in real-time.

Data-driven and automated (with some clinician control).

- Can provide CBT recommendations using Optimal Features in real-time.
- Data-driven and automated (with some clinician control).
- Adaptive to varying Optimal Features across patient populations.

- Can provide CBT recommendations using Optimal Features in real-time.
- Data-driven and automated (with some clinician control).
- Adaptive to varying Optimal Features across patient populations.
- Adjustable goal: Can make CBT recommendations targeting
 - Utility and Equity

Utility Equity more important more important

- Can provide CBT recommendations using Optimal Features in real-time.
- Data-driven and automated (with some clinician control).
- Adaptive to varying Optimal Features across patient populations.
- Adjustable goal: Can make CBT recommendations targeting
 - Utility and Equity

4	
Utility	Equity
more important	more important

Equity w.r.t. other attributes.

Takeaways

- Uncritical use of patient data with RL algorithms
 - 🥝 high utility, but
 - **X** disparities w.r.t gender (and other sensitive attributes).

MICHIGAN INSTITUTE FOR DATA SCIENCE UNIVERSITY OF MICHIGAN

Takeaways

- Uncritical use of patient data with RL algorithms
 - 🥝 high utility, but
 - X disparities w.r.t gender (and other sensitive attributes).
- Critical use of patient data with RL algorithms
 - 📀 high utility, and
 - equity w.r.t. gender (and other sensitive attributes).

Takeaways

- Uncritical use of patient data with RL algorithms
 - 🥝 high utility, but
 - X disparities w.r.t gender (and other sensitive attributes).
- Critical use of patient data with RL algorithms
 - 🥝 high utility, and
 - equity w.r.t. gender (and other sensitive attributes).

Future Directions

Patient responses to RL decisions change over time.

Takeaways

- Uncritical use of patient data with RL algorithms
 - 🥝 high utility, but
 - X disparities w.r.t gender (and other sensitive attributes).
- Critical use of patient data with RL algorithms
 - 🥝 high utility, and
 - equity w.r.t. gender (and other sensitive attributes).

Future Directions

- Patient responses to RL decisions change over time.
- Learning to defer: Suppose an RL policy, learned on US patient data, is to be deployed in Honduras.

Takeaways

- Uncritical use of patient data with RL algorithms
 - 🥝 high utility, but
 - X disparities w.r.t gender (and other sensitive attributes).
- Critical use of patient data with RL algorithms
 - 🥝 high utility, and
 - 🖉 equity w.r.t. gender (and other sensitive attributes).

Future Directions

- Patient responses to RL decisions change over time.
- Learning to defer: Suppose an RL policy, learned on US patient data, is to be deployed in Honduras.

When algorithmic recommendations are deemed unreliable/unsafe,

the algorithm defers to a human expert;

Takeaways

- Uncritical use of patient data with RL algorithms
 - 🥝 high utility, but
 - X disparities w.r.t gender (and other sensitive attributes).
- Critical use of patient data with RL algorithms
 - 🥝 high utility, and
 - 🖉 equity w.r.t. gender (and other sensitive attributes).

Future Directions

- Patient responses to RL decisions change over time.
- Learning to defer: Suppose an RL policy, learned on US patient data, is to be deployed in Honduras.

When algorithmic recommendations are deemed unreliable/unsafe,

- the algorithm defers to a human expert;
- the human expert makes a reliable recommendation;

Takeaways

- Uncritical use of patient data with RL algorithms
 - 🥝 high utility, but
 - X disparities w.r.t gender (and other sensitive attributes).
- Critical use of patient data with RL algorithms
 - 🥝 high utility, and
 - equity w.r.t. gender (and other sensitive attributes).

Future Directions

- Patient responses to RL decisions change over time.
- Learning to defer: Suppose an RL policy, learned on US patient data, is to be deployed in Honduras.
 - When algorithmic recommendations are deemed unreliable/unsafe,
 - the algorithm defers to a human expert;
 - the human expert makes a reliable recommendation;
 - the algorithm observes this interaction and learns to make a reliable recommendation in similar future interactions.

9/10

Thank you

For more details about this work, see $\frac{arxiv.org/abs/2402.19226}{C}$ or my webpage pratikgajane.github.io C.

If you'd like to chat, email me at pratik.gajane@gmail.com.

