ADVANCING BEHAVIORAL SCIENCE THROUGH AI + DIGITAL HEALTH

RL-Driven Pain Care Recommendations – Dr. Pratik Gajane

MICHIGAN INSTITUTE FOR CLINICAL & HEALTH RESEARCH

UNIVERSITY OF MICHIGAN

May 21, 2024

▶ Reinforcement learning (RL) to deliver personalized CBT for chronic pain.

E-HEALTH AND
ARTIFICIAL INTELLIGENCE

- ▶ Reinforcement learning (RL) to deliver personalized CBT for chronic pain.
- \blacktriangleright In this presentation, we will see
	- \triangleright how RL-based results display disparities w.r.t. sensitive attributes (gender, race), and
	- ▶ how to avoid such disparities.

- ∗ University of Michigan, Ann Arbor, USA.
- † Eindhoven University of Technology, Eindhoven, the Netherlands.

- ▶ Reinforcement learning (RL) to deliver personalized CBT for chronic pain.
- \blacktriangleright In this presentation, we will see
	- \triangleright how RL-based results display disparities w.r.t. sensitive attributes (gender, race), and
	- ▶ how to avoid such disparities.
- ▶ Latest version of this work : [Investigating](https://arxiv.org/abs/2402.19226) Gender Fairness in Machine [Learning-driven](https://arxiv.org/abs/2402.19226) Personalized Care for Chronic Pain [\(arxiv.org/abs/2402.19226\)](https://arxiv.org/abs/2402.19226) \mathbb{Z} .

- ∗ University of Michigan, Ann Arbor, USA.
- † Eindhoven University of Technology, Eindhoven, the Netherlands.

- ▶ Reinforcement learning (RL) to deliver personalized CBT for chronic pain.
- \blacktriangleright In this presentation, we will see
	- \triangleright how RL-based results display disparities w.r.t. sensitive attributes (gender, race), and
	- ▶ how to avoid such disparities.
- ▶ Latest version of this work : [Investigating](https://arxiv.org/abs/2402.19226) Gender Fairness in Machine [Learning-driven](https://arxiv.org/abs/2402.19226) Personalized Care for Chronic Pain [\(arxiv.org/abs/2402.19226\)](https://arxiv.org/abs/2402.19226) \mathbb{Z} .
- \blacktriangleright Collaborators for this work :
	- ▶ John D. Piette∗,
	- ▶ Sean Newman∗, and
	- \blacktriangleright Mykola Pechenizkiy[†].
- ∗ University of Michigan, Ann Arbor, USA.
- † Eindhoven University of Technology, Eindhoven, the Netherlands.

CBT Options

Pre-recorded message from a therapist 15-minute in-person session with a therapist 45-minute in-person session with a therapist

 \blacktriangleright In each patient interaction, the algorithm

MICHIGAN INSTITUTE FOR DATA SCIENCE

CBT Options

Pre-recorded message from a therapist 15-minute in-person session with a therapist 45-minute in-person session with a therapist

- \blacktriangleright In each patient interaction, the algorithm
	- ▶ Observes relevant patient information (features);

CBT Options

Pre-recorded message from a therapist 15-minute in-person session with a therapist 45-minute in-person session with a therapist

- \blacktriangleright In each patient interaction, the algorithm
	- ▶ Observes relevant patient information (features);
	- ▶ Uses features to decide which CBT option to recommend;

MICHIGAN INSTITUTE B DATA SCIENCE

CBT Options

Pre-recorded message from a therapist 15-minute in-person session with a therapist 45-minute in-person session with a therapist

- \blacktriangleright In each patient interaction, the algorithm
	- ▶ Observes relevant patient information (features);
	- ▶ Uses features to decide which CBT option to recommend;
	- ▶ Receives a reward (a number expressing the efficacy of recommended CBT option).

CBT Options

Pre-recorded message from a therapist 15-minute in-person session with a therapist 45-minute in-person session with a therapist

- \blacktriangleright In each patient interaction, the algorithm
	- ▶ Observes relevant patient information (features);
	- ▶ Uses features to decide which CBT option to recommend;
	- ▶ Receives a reward (a number expressing the efficacy of recommended CBT option).
- ▶ Earlier patient interactions (features, recommendation, reward) used to select recommendations in the subsequent interactions.

CBT Options

Pre-recorded message from a therapist 15-minute in-person session with a therapist 45-minute in-person session with a therapist

- \blacktriangleright In each patient interaction, the algorithm
	- ▶ Observes relevant patient information (features);
	- ▶ Uses features to decide which CBT option to recommend:
	- ▶ Receives a reward (a number expressing the efficacy of recommended CBT option).
- ▶ Earlier patient interactions (features, recommendation, reward) used to select recommendations in the subsequent interactions.
- \blacktriangleright Performance criterion : Utility = Average received reward. High utility reflects effective CBT recommendations.

▶ A recent clinical trial [1] showed that RL-based CBT treatments led to

 \bullet high utility (leading to improved patient outcomes) and,

 \blacktriangleright effective allocation of scarce clinical resources.

[1] Piette et al. Patient-centered pain care using artificial intelligence and mobile health tools: A randomized comparative effectiveness trial, 182(9):975, September 2022a.

4 / 10

MICHIGAN INSTITUTI ROATA SCIENCE

▶ A recent clinical trial [1] showed that RL-based CBT treatments led to

 \bullet high utility (leading to improved patient outcomes) and,

- \blacktriangleright effective allocation of scarce clinical resources.
- χ (RL) Algorithms can introduce/amplify disparities w.r.t. sensitive attributes (gender, race, etc)!

[1] Piette et al. Patient-centered pain care using artificial intelligence and mobile health tools: A randomized comparative effectiveness trial, 182(9):975, September 2022a.

4 / 10

- ▶ A recent clinical trial [1] showed that RL-based CBT treatments led to \bullet high utility (leading to improved patient outcomes) and,
	- ▶ effective allocation of scarce clinical resources.
- χ (RL) Algorithms can introduce/amplify disparities w.r.t. sensitive attributes (gender, race, etc)!
- ▶ We investigated gender disparities in the utility of the RL algorithm for 50000 patient interactions based on [2].

[1] Piette et al. Patient-centered pain care using artificial intelligence and mobile health tools: A randomized comparative effectiveness trial, 182(9):975, September 2022a.

[2] Dataset #2 for Piette et al.: Data for a Reinforcement Learning Intervention to Treat Chronic Pain. 4 / 10

- ▶ A recent clinical trial [1] showed that RL-based CBT treatments led to \bullet high utility (leading to improved patient outcomes) and,
	- ▶ effective allocation of scarce clinical resources.
- \boldsymbol{x} (RL) Algorithms can introduce/amplify disparities w.r.t. sensitive attributes (gender, race, etc)!
- ▶ We investigated gender disparities in the utility of the RL algorithm for 50000 patient interactions based on [2].

[1] Piette et al. Patient-centered pain care using artificial intelligence and mobile health tools: A randomized comparative effectiveness trial, 182(9):975, September 2022a.

[2] Dataset #2 for Piette et al.: Data for a Reinforcement Learning Intervention to Treat Chronic Pain. 4 / 10

- ▶ A recent clinical trial [1] showed that RL-based CBT treatments led to \bullet high utility (leading to improved patient outcomes) and,
	- ▶ effective allocation of scarce clinical resources.
- χ (RL) Algorithms can introduce/amplify disparities w.r.t. sensitive attributes (gender, race, etc)!
- ▶ We investigated gender disparities in the utility of the RL algorithm for 50000 patient interactions based on [2].

[1] Piette et al. Patient-centered pain care using artificial intelligence and mobile health tools: A randomized comparative effectiveness trial, 182(9):975, September 2022a.

[2] Dataset #2 for Piette et al.: Data for a Reinforcement Learning Intervention to Treat Chronic Pain. 4 / 10

▶ Patient Features
Pain interference 1

CBT skill practice this week Pain intensity change Sleep quality this week Sleep duration this week

Pain interference 2 Session Number $\%$ days this week with steps goal met

▶ Patient Features
Pain interference 1

CBT skill practice this week Pain intensity change Sleep quality this week Sleep duration this week

Pain interference 2 Session Number $\%$ days this week with steps goal met

▶ Patient Features
Pain interference 1

CBT skill practice this week Pain intensity change Sleep quality this week Sleep duration this week

Pain interference 2 Session Number $\%$ days this week with steps goal met

Feature Selection : Use a subset of features.

▶ We evaluated the RL algorithm with 22 feature combinations, and almost all resulted in gender disparities ($p < 0.05$ and Cohen's d around 0.3).

Feature Selection : Use a subset of features.

- ▶ We evaluated the RL algorithm with 22 feature combinations, and almost all resulted in gender disparities ($p < 0.05$ and Cohen's d around 0.3).
- ▶ Results using Optimal Features
	- **O** Utility for men: Highest among all combinations Utility for women : Highest among all combinations

Feature Selection : Use a subset of features.

- ▶ We evaluated the RL algorithm with 22 feature combinations, and almost all resulted in gender disparities ($p < 0.05$ and Cohen's d around 0.3).
- ▶ Results using Optimal Features

▶ Patient Features

- **O** Utility for men: Highest among all combinations Utility for women : Highest among all combinations
- Ø

Utility for women not statistically different \approx utility for men.

5 / 10

Feature Selection : Use a subset of features.

- ▶ We evaluated the RL algorithm with 22 feature combinations, and almost all resulted in gender disparities ($p < 0.05$ and Cohen's d around 0.3).
- ▶ Results using Optimal Features

▶ Patient Features

- **O** Utility for men: Highest among all combinations Utility for women : Highest among all combinations
-

Utility for women not statistically different \approx utility for men.

▶ If the RL algorithm makes recommendations based on Optimal Features High utility Yes Equity w.r.t. gender Yes

Objective: Recommend CBT treatments using Optimal Features.

MICHIGAN INSTITUTE
FOR DATA SCIENCE

Objective: Recommend CBT treatments using Optimal Features.

 \bullet The identity of Optimal Features may be unknown.

Objective: Recommend CBT treatments using Optimal Features.

 \bullet The identity of Optimal Features may be unknown.

E-HEALTH AND ARTIFICIAL INTELLIGENCE

Objective: Recommend CBT treatments using Optimal Features.

- \bullet The identity of Optimal Features may be unknown.
- ❷ Optimal Features may differ across patient populations.

- In each patient interaction, the algorithm
	- ▶ Observes features;
	- ▶ Feature selection : Selects a subset of features:

Objective: Recommend CBT treatments using Optimal Features.

- \bullet The identity of Optimal Features may be unknown.
- ❷ Optimal Features may differ across patient populations.

- In each patient interaction, the algorithm
	- ▶ Observes features;
	- ▶ Feature selection : Selects a subset of features:
	- ▶ Uses selected features to decide which treatment to recommend;

Objective: Recommend CBT treatments using Optimal Features.

- \bullet The identity of Optimal Features may be unknown.
- ❸ Optimal Features may differ across patient populations.

- \blacktriangleright In each patient interaction, the algorithm
	- ▶ Observes features;
	- ▶ Feature selection : Selects a subset of features:
	- ▶ Uses selected features to decide which treatment to recommend:
	- ▶ Receives a reward.
- ▶ Earlier patient interactions (features, recommendation, reward) used to select subsequent recommendations and for **feature selection**.

- ▶ Evaluated our RL algorithm on 50000 patient interactions based on [2].
- ▶ Our algorithm used Optimal Features to make CBT recommendations for 86% of patient interactions.

[2] Dataset #2 for Piette et al.: Data for a Reinforcement Learning Intervention to Treat Chronic Pain.

MICHIGAN IN

- ▶ Evaluated our RL algorithm on 50000 patient interactions based on [2].
- ▶ Our algorithm used Optimal Features to make CBT recommendations for 86% of patient interactions.
- ▶ Relatively infrequent use of Optimal Features initially (Cold start). \Rightarrow Initial patient interactions possibly receiving poor recommendations.

[2] Dataset #2 for Piette et al.: Data for a Reinforcement Learning Intervention to Treat Chronic Pain.

- ▶ Evaluated our RL algorithm on 50000 patient interactions based on [2].
- ▶ Our algorithm used Optimal Features to make CBT recommendations for 86% of patient interactions.
- ▶ Relatively infrequent use of Optimal Features initially (Cold start). \Rightarrow Initial patient interactions possibly receiving poor recommendations. Input clinicians' domain knowledge about which features are likely to be optimal.

[2] Dataset #2 for Piette et al.: Data for a Reinforcement Learning Intervention to Treat Chronic Pain.

- ▶ Evaluated our RL algorithm on 50000 patient interactions based on [2].
- ▶ Our algorithm used Optimal Features to make CBT recommendations for 86% of patient interactions.
- ▶ Relatively infrequent use of Optimal Features initially (Cold start). \Rightarrow Initial patient interactions possibly receiving poor recommendations. Input clinicians' domain knowledge about which features are likely to be optimal.
	- \triangleright This led to 17% improvement in our algorithm's frequency of using Optimal Features initially (first decile of interactions).

[2] Dataset #2 for Piette et al.: Data for a Reinforcement Learning Intervention to Treat Chronic Pain.

▶ Can provide CBT recommendations using Optimal Features in real-time.

E HEALTH AND
ARTIFICIAL INTELLIGENCE

▶ Can provide CBT recommendations using Optimal Features in real-time.

 \blacktriangleright Data-driven and automated

E-HEALTH AND ARTIFICIAL INTELLIGENCE

▶ Can provide CBT recommendations using Optimal Features in real-time.

▶ Data-driven and automated (with some clinician control).

- ▶ Can provide CBT recommendations using Optimal Features in real-time.
- ▶ Data-driven and automated (with some clinician control).
- ▶ Adaptive to varying Optimal Features across patient populations.

- ▶ Can provide CBT recommendations using Optimal Features in real-time.
- ▶ Data-driven and automated (with some clinician control).
- ▶ Adaptive to varying Optimal Features across patient populations.
- ▶ Adjustable goal : Can make CBT recommendations targeting $-$
	- ▶ Utility and Equity

- ▶ Can provide CBT recommendations using Optimal Features in real-time.
- ▶ Data-driven and automated (with some clinician control).
- ▶ Adaptive to varying Optimal Features across patient populations.
- \triangleright Adjustable goal : Can make CBT recommendations targeting \rightarrow
	- ▶ Utility and Equity

▶ Equity w.r.t. other attributes.

Takeaways

- \blacktriangleright Uncritical use of patient data with RL algorithms
	- high utility, but
	- ✗ disparities w.r.t gender (and other sensitive attributes).

Takeaways

 \triangleright Uncritical use of patient data with RL algorithms

high utility, but

✗ disparities w.r.t gender (and other sensitive attributes).

 \triangleright Critical use of patient data with RL algorithms

high utility, and

 \bullet equity w.r.t. gender (and other sensitive attributes).

MICHIGAN INSTITUTE R DATA SCIENCE

Takeaways

 \triangleright Uncritical use of patient data with RL algorithms

high utility, but

✗ disparities w.r.t gender (and other sensitive attributes).

- \triangleright Critical use of patient data with RL algorithms
	- high utility, and

 \bullet equity w.r.t. gender (and other sensitive attributes).

Future Directions

▶ Patient responses to RL decisions change over time.

Takeaways

 \triangleright Uncritical use of patient data with RL algorithms

high utility, but

✗ disparities w.r.t gender (and other sensitive attributes).

- \triangleright Critical use of patient data with RL algorithms
	- high utility, and

 \bullet equity w.r.t. gender (and other sensitive attributes).

Future Directions

- ▶ Patient responses to RL decisions change over time.
- ▶ Learning to defer: Suppose an RL policy, learned on US patient data, is to be deployed in Honduras.

Takeaways

 \triangleright Uncritical use of patient data with RL algorithms

high utility, but

✗ disparities w.r.t gender (and other sensitive attributes).

- \triangleright Critical use of patient data with RL algorithms
	- high utility, and

 \bullet equity w.r.t. gender (and other sensitive attributes).

Future Directions

- ▶ Patient responses to RL decisions change over time.
- ▶ Learning to defer: Suppose an RL policy, learned on US patient data, is to be deployed in Honduras.

When algorithmic recommendations are deemed unreliable/unsafe,

9 / 10

 \blacktriangleright the algorithm defers to a human expert;

Takeaways

 \triangleright Uncritical use of patient data with RL algorithms

high utility, but

✗ disparities w.r.t gender (and other sensitive attributes).

- \triangleright Critical use of patient data with RL algorithms
	- high utility, and

 \bullet equity w.r.t. gender (and other sensitive attributes).

Future Directions

- ▶ Patient responses to RL decisions change over time.
- ▶ Learning to defer: Suppose an RL policy, learned on US patient data, is to be deployed in Honduras.

When algorithmic recommendations are deemed unreliable/unsafe,

- \blacktriangleright the algorithm defers to a human expert;
- \blacktriangleright the human expert makes a reliable recommendation;

Takeaways

 \triangleright Uncritical use of patient data with RL algorithms

high utility, but

✗ disparities w.r.t gender (and other sensitive attributes).

- \triangleright Critical use of patient data with RL algorithms
	- high utility, and

 \bullet equity w.r.t. gender (and other sensitive attributes).

Future Directions

- ▶ Patient responses to RL decisions change over time.
- ▶ Learning to defer: Suppose an RL policy, learned on US patient data, is to be deployed in Honduras.

When algorithmic recommendations are deemed unreliable/unsafe,

- \blacktriangleright the algorithm defers to a human expert;
- \blacktriangleright the human expert makes a reliable recommendation;
- \triangleright the algorithm observes this interaction and learns to make a reliable recommendation in similar future interactions.

Thank you

For more details about this work, see arxiv.org/abs/2402.19226 \mathbb{Z} or my webpage pratikgajane.github.io \mathbb{Z} .

If you'd like to chat, email me at pratik.gajane@gmail.com.

