# Lecture 5 - Reinforcement Learning in Markov Decision Processes

Pratik Gajane

September 21, 2022

2AMM20 Research Topics in Data Mining Eindhoven University of Technology

- Lecture 1: Introduction to reinforcement learning and its basic elements.
- Lecture 2: Upper confidence bound (UCB) for stationary stochastic bandits and its regret bound. Frequentist perspective.
- Lecture 3: Thompson sampling for stationary stochastic bandits and its regret bound. Bayseian perspective.
- Lecture 4: Non-stationary stochastic bandits, adversarial bandits, dueling bandits and contextual bandits.

- Lecture 1: Introduction to reinforcement learning and its basic elements.
- Lecture 2: Upper confidence bound (UCB) for stationary stochastic bandits and its regret bound. Frequentist perspective.
- Lecture 3: Thompson sampling for stationary stochastic bandits and its regret bound. Bayseian perspective.
- Lecture 4: Non-stationary stochastic bandits, adversarial bandits, dueling bandits and contextual bandits.

- Lecture 1: Introduction to reinforcement learning and its basic elements.
- Lecture 2: Upper confidence bound (UCB) for stationary stochastic bandits and its regret bound. Frequentist perspective.
- Lecture 3: Thompson sampling for stationary stochastic bandits and its regret bound. Bayseian perspective.
- Lecture 4: Non-stationary stochastic bandits, adversarial bandits, dueling bandits and contextual bandits.

- Lecture 1: Introduction to reinforcement learning and its basic elements.
- Lecture 2: Upper confidence bound (UCB) for stationary stochastic bandits and its regret bound. Frequentist perspective.
- Lecture 3: Thompson sampling for stationary stochastic bandits and its regret bound. Bayseian perspective.
- Lecture 4: Non-stationary stochastic bandits, adversarial bandits, dueling bandits and contextual bandits.

#### Lecture 5: Outline

- Markov decision processes.
- Mathematical setting and a lower bound on regret.
- A near-optimal algorithm UCRL2.
- Regret analysis for UCRL2.

# \_\_\_\_

**Processes** 

Introduction to Markov Decision

# Markov Decision Process: Simple Example I



A race of robot cars

Image source: UC Berkeley AI course, lecture 10

# Markov Decision Process: Simple Example II

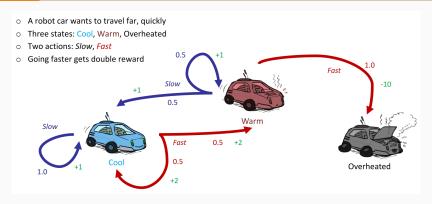


Image source: UC Berkeley AI course, lecture 10

 Going faster earns more rewards (usually), but runs the risk of overheating and not finishing the race.
 "To finish first, you must first finish".

## Markov Decision Process: Simple Example III

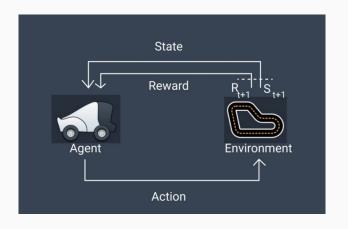


Image source: Data science blog

Mathematical Setting and a

Lower bound on Regret

• Finite set of states S with S = |S|.

- Finite set of states S with S = |S|.
- Finite set of actions A with A = |A|.

- Finite set of states S with S = |S|.
- Finite set of actions A with A = |A|.
- An initial state  $s_0$ .

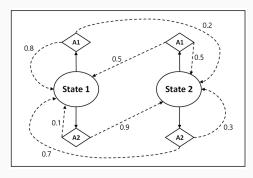
- Finite set of states S with S = |S|.
- Finite set of actions A with A = |A|.
- An initial state  $s_0$ .
- When action a is executed in state s,
  - the learner receives a random reward drawn from an unknown distribution on [0,1] with mean reward  $\overline{r}(s,a)$ , and
  - a random transition to s' occurs according to unknown transition probabilities p(s' | s, a).

- Finite set of states S with S = |S|.
- Finite set of actions A with A = |A|.
- An initial state s<sub>0</sub>.
- When action a is executed in state s,
  - the learner receives a random reward drawn from an unknown distribution on [0,1] with mean reward  $\overline{r}(s,a)$ , and
  - a random transition to s' occurs according to unknown transition probabilities p(s' | s, a).
- Why Markov? "The future is independent of the past given the present". (For further understanding, consult slides 38,39 from lecture 1 in this track.)

- $S = \{ \text{State 1, State 2} \}.$
- $A = \{A1, A2\}.$
- Initial state = State 1.
- Binary rewards  $= \{0, 1\}.$
- Mean rewards  $\bar{r}(s, a)$

|         | A1  | A2  |
|---------|-----|-----|
| State 1 | 1   | 1   |
| State 2 | 0.5 | 0.5 |

- Is A1 better than A2?
- Being in State 1 is more beneficial than being in State 2.

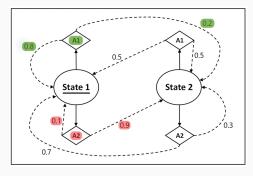


Transition probabilities

- $S = \{ \text{State 1, State 2} \}.$
- $A = \{A1, A2\}.$
- Initial state = State 1.
- Binary rewards  $= \{0, 1\}.$
- Mean rewards  $\bar{r}(s, a)$

|         | A1  | A2  |
|---------|-----|-----|
| State 1 | 1   | 1   |
| State 2 | 0.5 | 0.5 |

- Is A1 better than A2?
- Being in State 1 is more beneficial than being in State 2.

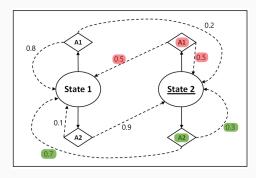


Transition probabilities

- $S = \{ \text{State 1, State 2} \}.$
- $A = \{A1, A2\}.$
- Initial state = State 1.
- Binary rewards =  $\{0,1\}$ .
- Mean rewards  $\bar{r}(s, a)$

|         | A1  | A2  |
|---------|-----|-----|
| State 1 | 1   | 1   |
| State 2 | 0.5 | 0.5 |

- Is A1 better than A2?
- Being in State 1 is more beneficial than being in State 2.



Transition probabilities

## **Definition** (Diameter)

The  $diameter\ D$  of an MDP is the maximal expected time it takes to reach any state from any other state (using an appropriate policy).

## **Definition** (Diameter)

The *diameter D* of an MDP is the maximal expected time it takes to reach any state from any other state (using an appropriate policy).

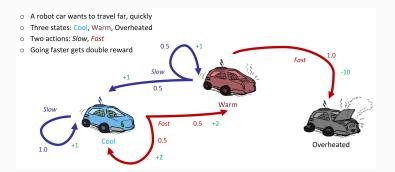
**Note:** Typically we consider *communicating* MDPs i.e. with finite *D*.

## **Definition** (Diameter)

The *diameter D* of an MDP is the maximal expected time it takes to reach any state from any other state (using an appropriate policy).

**Note:** Typically we consider *communicating* MDPs i.e. with finite *D*.

Does this MDP have a finite diameter?

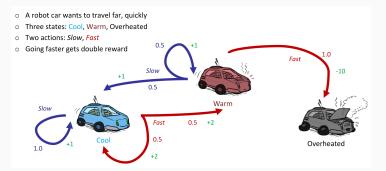


## **Definition** (Diameter)

The *diameter D* of an MDP is the maximal expected time it takes to reach any state from any other state (using an appropriate policy).

**Note:** Typically we consider *communicating* MDPs i.e. with finite *D*.

Does this MDP have a finite diameter? No. Cannot go from Overheated to Cool or Warm!

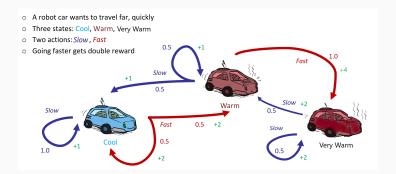


## **Definition** (Diameter)

The *diameter D* of an MDP is the maximal expected time it takes to reach any state from any other state (using an appropriate policy).

**Note:** Typically we consider *communicating* MDPs i.e. with finite *D*.

Does this MDP have a finite diameter?

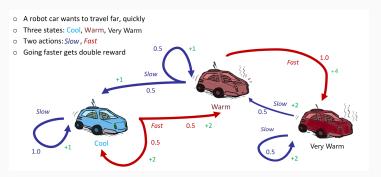


## **Definition (Diameter)**

The *diameter D* of an MDP is the maximal expected time it takes to reach any state from any other state (using an appropriate policy).

**Note:** Typically we consider *communicating* MDPs i.e. with finite *D*.

Does this MDP have a finite diameter? Yes. Diameter is 4 as the expected time from Cool to Very warm (and vice versa) is 4.



An algorithm  $\mathfrak A$  operating on MDP M with initial state  $s_0$ .

- ullet At each time step t, algorithm  ${\mathfrak A}$ 
  - is in state s(t),
  - performs action a(t), and
  - receives reward r(t).

An algorithm  $\mathfrak{A}$  operating on MDP M with initial state  $s_0$ .

- At each time step t, algorithm  $\mathfrak A$ 
  - is in state s(t),
  - performs action a(t), and
  - receives reward r(t).
- Undiscounted accumulated reward,

$$R(M,\mathfrak{A},s_0,T)=\sum_{t=1}^T r(t).$$

An algorithm  $\mathfrak{A}$  operating on MDP M with initial state  $s_0$ .

- At each time step t, algorithm  $\mathfrak A$ 
  - is in state s(t),
  - performs action a(t), and
  - receives reward r(t).
- Undiscounted accumulated reward,

$$R(M,\mathfrak{A},s_0,T)=\sum_{t=1}^T r(t).$$

• Discounted accumulated reward with  $0 < \gamma < 1$ ,

$$R(M,\mathfrak{A},s_0,T)=\sum_{t=1}^T\gamma^{t-1}r(t).$$

An algorithm  $\mathfrak{A}$  operating on MDP M with initial state  $s_0$ .

- At each time step t, algorithm  $\mathfrak A$ 
  - is in state s(t),
  - performs action a(t), and
  - receives reward r(t).
- Undiscounted accumulated reward,

$$R(M,\mathfrak{A},s_0,T)=\sum_{t=1}^T r(t).$$

• Discounted accumulated reward with  $0 < \gamma < 1$ ,

$$R(M,\mathfrak{A},s_0,T)=\sum_{t=1}^T\gamma^{t-1}r(t).$$

• In this lecture, we consider undiscounted accumulated reward.

# **Policy**

• The learner uses a policy to choose actions.

# **Policy**

- The learner uses a policy to choose actions.
- Policies can be stationary or non-stationary.

## **Definition (Stationary Policy)**

A stationary policy is a mapping from  $\pi: \mathcal{S} \to \mathcal{A}$ .



Image source: UC Berkeley AI course, lecture 11

ullet The average reward of policy  $\pi$  starting in state  $s_0$  in MDP M is

$$\rho(M, \pi, s_0) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[ \sum_{t=1}^T r(t) \right]$$

• The average reward of policy  $\pi$  starting in state  $s_0$  in MDP M is

$$\rho(M, \pi, s_0) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[ \sum_{t=1}^{T} r(t) \right]$$

• The optimal average reward  $\rho^*$  is

$$\rho^*(M) = \rho^*(M, s_0) := \max_{\pi} \rho(M, \pi, s_0)$$

• Why the first = in the above? For MDPs with finite diameter,  $\rho^*$  does not depend on the initial state [Puterman, 1994, Section 8.3.3].

• The average reward of policy  $\pi$  starting in state  $s_0$  in MDP M is

$$\rho(M, \pi, s_0) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[ \sum_{t=1}^T r(t) \right]$$

• The optimal average reward  $\rho^*$  is

$$\rho^*(M) = \rho^*(M, s_0) := \max_{\pi} \rho(M, \pi, s_0)$$

- Why the first = in the above? For MDPs with finite diameter,  $\rho^*$  does not depend on the initial state [Puterman, 1994, Section 8.3.3].
- Optimal policy  $\pi^*$ := a policy that gives optimal average reward  $\rho^*$ .

• The average reward of policy  $\pi$  starting in state  $s_0$  in MDP M is

$$\rho(M, \pi, s_0) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[ \sum_{t=1}^{T} r(t) \right]$$

• The optimal average reward  $\rho^*$  is

$$\rho^*(M) = \rho^*(M, s_0) := \max_{\pi} \rho(M, \pi, s_0)$$

- Why the first = in the above? For MDPs with finite diameter,  $\rho^*$  does not depend on the initial state [Puterman, 1994, Section 8.3.3].
- Optimal policy  $\pi^*$ := a policy that gives optimal average reward  $\rho^*$ .
- When S and A are finite, the rewards are bounded and D is finite, it is sufficient to consider stationary policies as  $\rho^*$  can be achieved by a stationary policy [Puterman, 1994].

## Value Iteration

How to compute an optimal policy  $\pi^*$  (for example):

#### Value iteration

- Set  $v_0(s) := 0$  for all states  $s \in S$ .
- For n = 1, 2, ... and all  $s \in \mathcal{S}$ , set the iterated state values to be

$$v_{n+1}(s) := \max_{a \in A} \left\{ \overline{r}(s,a) + \sum_{s' \in \mathcal{S}} p(s'|s,a) v_n(s') \right\}.$$

#### Value Iteration

How to compute an optimal policy  $\pi^*$  (for example):

#### Value iteration

- Set  $v_0(s) := 0$  for all states  $s \in S$ .
- For n = 1, 2, ... and all  $s \in \mathcal{S}$ , set the iterated state values to be

$$v_{n+1}(s) := \max_{a \in A} \left\{ \overline{r}(s,a) + \sum_{s' \in S} p(s'|s,a) v_n(s') \right\}.$$

#### Value Iteration

How to compute an optimal policy  $\pi^*$  (for example):

#### Value iteration

- Set  $v_0(s) := 0$  for all states  $s \in S$ .
- For  $n = 1, 2, \ldots$  and all  $s \in \mathcal{S}$ , set the iterated state values to be

$$v_{n+1}(s) := \max_{a \in A} \left\{ \overline{r}(s,a) + \sum_{s' \in S} p(s'|s,a) v_n(s') \right\}.$$

#### Convergence (under certain conditions)

For  $n \to \infty$ , the arg max-actions converge to an optimal policy  $\pi^*$ .

#### Value Iteration

How to compute an optimal policy  $\pi^*$  (for example):

#### Value iteration

- Set  $v_0(s) := 0$  for all states  $s \in S$ .
- For n = 1, 2, ... and all  $s \in \mathcal{S}$ , set the iterated state values to be

$$v_{n+1}(s) := \max_{a \in A} \left\{ \overline{r}(s,a) + \sum_{s' \in S} p(s'|s,a) v_n(s') \right\}.$$

#### Convergence (under certain conditions)

For  $n \to \infty$ , the arg max-actions converge to an optimal policy  $\pi^*$ .

Another stopping criterion: Stop the value iteration when the maximum difference between two successive v's  $\leq$  some threshold.

Then, the arg-max action policy is near-optimal.

For further information about value iteration and other stopping criteria, click here.

### Performance Measure: Regret

How do we define regret usually?
 Regret = optimal cumulative reward - learner's reward.

### Performance Measure: Regret

How do we define regret usually?
 Regret = optimal cumulative reward - learner's reward.

#### **Definition (Regret)**

The *regret* of an algorithm  $\mathfrak A$  in MDP M with initial state  $s_0$  after T steps is

$$\mathfrak{R}(M,\mathfrak{A},s_0,T):=T\rho^*-R(M,\mathfrak{A},s_0,T)=T\rho^*-\sum_{t=1}^{r}r(t),$$

where r(t) is the random reward the algorithm receives at step t.

Note:  $T\rho^*$  is a good proxy for the optimal T-step reward [Jaksch et al., 2010, Page 3].

$$\max_{\mathfrak{A}} \mathbb{E}[R(M, \mathfrak{A}, s_o, T)] = T \rho^* + O(D).$$

#### Lower Bound on Regret

#### Theorem (Jaksch et al. [2010])

For any algorithm and any natural numbers T, S, A > 1, and  $D \ge \log_A S$ , there is an MDP M with S states, A actions, and diameter D, such that for any initial state S the expected regret after S steps is of the order

 $\sqrt{DSAT}$ .

# Regret

An Algorithm with Near-optimal

### **Optimism Principle**



"The learner should act as if it is in the best plausible world."

### **Optimism in MDPs: Estimates**

#### • For bandits:

Estimates  $\hat{\mu}_a$  for mean reward of each arm a

$$\hat{\mu}_{\textit{a}} \coloneqq \frac{\text{sum of received rewards when playing arm }\textit{a}}{\text{number of times arm }\textit{a} \text{ was played}}.$$

## Optimism in MDPs: Estimates

#### • For bandits:

Estimates  $\hat{\mu}_a$  for mean reward of each arm a

$$\hat{\mu}_a \coloneqq \frac{\text{sum of received rewards when playing arm } a}{\text{number of times arm } a \text{ was played}}.$$

#### • For MDPs:

Estimates for mean rewards and transition probabilities

$$\hat{r}(s,a) := \frac{\text{sum of received rewards when playing } a \text{ in } s}{\text{number of times } a \text{ was played in } s},$$

$$\hat{p}(s'|s,a) := \frac{\text{number of transitions to } s' \text{ when playing } a \text{ in } s}{\text{number of times } a \text{ was played in } s}.$$

### **Optimism in MDPs: Confidence Intervals**

• For bandits:

confidence intervals for reward of each arm

### **Optimism in MDPs: Confidence Intervals**

- For bandits:
   confidence intervals for reward of each arm
- For MDPs: confidence intervals for rewards and transition probabilities

#### Set of plausible MDPs

The set  $\mathbb{M}$  of plausible MDPs given the estimates  $\hat{r}$  and  $\hat{\rho}$  is the set of all MDPs with rewards  $\tilde{r}$  and transition probabilities  $\tilde{\rho}$  such that

$$\begin{aligned} \left| \hat{r}(s,a) - \tilde{r}(s,a) \right| &\leq & \operatorname{conf}_{r}(s,a), \\ \left\| \hat{\rho}(\cdot|s,a) - \tilde{\rho}(\cdot|s,a) \right\|_{1} &\leq & \operatorname{conf}_{p}(s,a). \end{aligned}$$

where 
$$\|\mathbf{x}\|_1 = \sum |x_i|$$
.

### Optimism in MDPs: Policy

#### • For bandits:

Choose arm with the highest upper confidence bound.

### **Optimism in MDPs: Policy**

#### • For bandits:

Choose arm with the highest upper confidence bound.

#### • For MDPs:

Choose an optimistic MDP  $\tilde{\mathcal{M}} \in \mathbb{M}$  that promises highest average reward under an optimal policy  $\tilde{\pi}$ ,

where  $\mathbb{M}$  is the set of plausible MDPs built using confidence intervals.

 $\leadsto$  Choose optimistic MDP  $\tilde{\mathcal{M}} \in \mathbb{M}$  and optimal policy  $\tilde{\pi}$  such that

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}) = \max_{\pi, \mathcal{M} \in \mathbb{M}} \rho(\mathcal{M}, \pi).$$

#### The Optimal Policy in the Optimistic MDP

 $\leadsto$  Choose optimistic MDP  $\tilde{\mathcal{M}}\in\mathbb{M}$  and optimal policy  $\tilde{\pi}$  such that

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

### The Optimal Policy in the Optimistic MDP

 $\leadsto$  Choose optimistic MDP  $\tilde{\mathcal{M}} \in \mathbb{M}$  and optimal policy  $\tilde{\pi}$  such that

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

Use an extension of value iteration.
 That is, for all states s, set u<sub>0</sub>(s) := 0 and

$$u_{i+1}(s) := \max_{a} \left\{ \hat{r}(s,a) + \operatorname{conf}_{r}(s,a) + \max_{p \in \mathcal{P}(s,a)} \left\{ \sum_{s'} p(s')u_{i}(s') \right\} \right\},$$

where  $\mathcal{P}(s, a)$  is the set of all plausible transition probabilities.

### The Optimal Policy in the Optimistic MDP

 $\leadsto$  Choose optimistic MDP  $\tilde{\mathcal{M}} \in \mathbb{M}$  and optimal policy  $\tilde{\pi}$  such that

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

• Use an extension of value iteration. That is, for all states s, set  $u_0(s) := 0$  and

$$u_{i+1}(s) := \max_{a} \left\{ \hat{r}(s,a) + \operatorname{conf}_{r}(s,a) + \max_{p \in \mathcal{P}(s,a)} \left\{ \sum_{s'} p(s') u_{i}(s') \right\} \right\},$$

where  $\mathcal{P}(s, a)$  is the set of all plausible transition probabilities.

•  $\max \mathbf{p} \cdot \mathbf{u}_i$  is a linear optimization problem over the convex polytope  $\mathcal{P}(s,a)$ . So it can be evaluated considering only the finite number of vertices of this polytope.

(For further information, see [Jaksch et al., 2010, Section 3.1].)

#### **Break**

We start again after a break.

#### Recap

#### Before the break, we saw

- Introduction to Markov decision processes, definitions of average reward, diameter and regret.
- Lower bound for regret of the order  $\sqrt{DSAT}$ .
- Optimism principle in MDPs: use confidence intervals for rewards and transition probabilities to build a set of plausible MDPs and then choose an optimal policy in the optimistic MDP.
- How to compute the optimal policy in the optimistic MDP using extended value iteration.

#### Recap

#### Before the break, we saw

- Introduction to Markov decision processes, definitions of average reward, diameter and regret.
- Lower bound for regret of the order  $\sqrt{DSAT}$ .
- Optimism principle in MDPs: use confidence intervals for rewards and transition probabilities to build a set of plausible MDPs and then choose an optimal policy in the optimistic MDP.
- How to compute the optimal policy in the optimistic MDP using extended value iteration.
- Next, we shall see the algorithm UCRL2 and its regret bound.

 Runs in episodes i.e., a series of time steps – these are used by the algorithm internally.

#### Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode k = 1, 2, ... **do**
- Compute the estimates for rewards and transition probabilities
- 3: Build the set  $\mathbb{M}_k$  of plausible MDPs based on current estimates
- 4: Find an optimal policy  $ilde{\pi}_k$  in the optimistic MDP  ${\mathcal M}$  which satisfies

$$ho(\mathcal{M}, ilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} 
ho(\mathcal{M}, \pi).$$

- using extended value iteration
- 5: Execute  $\tilde{\pi}_{\nu}$  until
- 6: end for

 Runs in episodes i.e., a series of time steps – these are used by the algorithm internally.

#### Algorithm UCRL2 [Jaksch et al., 2010]

- 1: for episode  $k = 1, 2, \ldots$  do
- 2: Compute the estimates for rewards and transition probabilities.
- 3: Build the set  $\mathbb{M}_k$  of plausible MDPs based on current estimates
- 4: Find an optimal policy  $\tilde{\pi}_k$  in the optimistic MDP  $\mathcal{M}$  which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

- using extended value iteration
- 5: Execute  $\tilde{\pi}_k$  until
- 6: end for

 Runs in episodes i.e., a series of time steps – these are used by the algorithm internally.

#### Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode  $k = 1, 2, \ldots$  **do**
- 2: Compute the estimates for rewards and transition probabilities.
- 3: Build the set  $M_k$  of plausible MDPs based on current estimates.
- 4: Find an optimal policy  $\tilde{\pi}_k$  in the optimistic MDP  $\mathcal{M}$  which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

- using extended value iteration
- 5: Execute  $\tilde{\pi}_k$  unti
- 6: end for

 Runs in episodes i.e., a series of time steps – these are used by the algorithm internally.

#### Algorithm UCRL2 [Jaksch et al., 2010]

- 1: for episode  $k = 1, 2, \ldots$  do
- 2: Compute the estimates for rewards and transition probabilities.
- 3: Build the set  $M_k$  of plausible MDPs based on current estimates.
- 4: Find an optimal policy  $\tilde{\pi}_k$  in the optimistic MDP  $\tilde{\mathcal{M}}$  which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- 5: Execute  $\tilde{\pi}_k$  until
- 6: end for

 Runs in episodes i.e., a series of time steps – these are used by the algorithm internally.

#### Algorithm UCRL2 [Jaksch et al., 2010]

- 1: for episode  $k = 1, 2, \ldots$  do
- 2: Compute the estimates for rewards and transition probabilities.
- 3: Build the set  $M_k$  of plausible MDPs based on current estimates.
- 4: Find an optimal policy  $\tilde{\pi}_k$  in the optimistic MDP  $\tilde{\mathcal{M}}$  which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- 5: Execute  $\tilde{\pi}_k$  until episode stopping criterion is satisfied .
- 6: end for

 Runs in episodes i.e., a series of time steps – these are used by the algorithm internally.

#### Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode  $k = 1, 2, \ldots$  **do**
- 2: Compute the estimates for rewards and transition probabilities.
- 3: Build the set  $\mathbb{M}_k$  of plausible MDPs based on current estimates.
- 4: Find an optimal policy  $\tilde{\pi}_k$  in the optimistic MDP  $\tilde{\mathcal{M}}$  which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- 5: Execute  $\tilde{\pi}_k$  until the visits in some state-action pair have doubled .
- 6: end for
  - $N_k(s, a) := \text{ visits to state action pair } (s, a) \text{ prior to episode } k.$
  - $v_k(s, a) := \text{ visits to state action pair } (s, a) \text{ in episode } k.$

Episode stopping criterion:  $v_k(s, a) = \max\{1, N_k(s, a)\}\$  for some (s, a).

#### Regret Bound for UCRL2

#### Theorem (Jaksch et al. [2010])

In an MDP with S states, A actions, and diameter D, with probability of at least  $1-\delta$  the regret of UCRL2 after T steps is bounded by

$$34 \cdot DS \sqrt{AT \log \left(\frac{T}{\delta}\right)}$$
.

#### Regret Bound for UCRL2

#### Theorem (Jaksch et al. [2010])

In an MDP with S states, A actions, and diameter D, with probability of at least  $1-\delta$  the regret of UCRL2 after T steps is bounded by

$$34 \cdot DS \sqrt{AT \log \left(\frac{T}{\delta}\right)}$$
.

• Gap of  $\sqrt{DS}$  between the lower bound (i.e.,  $\sqrt{DSAT}$ ) and UCRL2 upper bound. So UCRL2 is near-optimal.  $\odot$ 

**Proving the Regret Bound** 

### Proving the Regret Bound for UCB: Roadmap

- Reduce regret to the sum of per episode-regret.
- Bound the number of episodes.
- Bound per-episode regret.

#### Reduction to Per-Episode Regret

• Let us define regret in episode *k* to be

$$\Delta_k := \sum_{s,a} v_k(s,a) (\rho^* - \bar{r}(s,a)),$$

where  $v_k(s, a) :=$  the number of times a was played in s in episode k.

#### Reduction to Per-Episode Regret

• Let us define regret in episode *k* to be

$$\Delta_k := \sum_{s,a} v_k(s,a)(\rho^* - \overline{r}(s,a)),$$

where  $v_k(s, a) :=$  the number of times a was played in s in episode k.

• Then, the regret can be bounded as,

$$\Re(M,\mathfrak{A},s_0,T)\leq \sum_k \Delta_k + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)},$$

with high probability (see [Jaksch et al., 2010, Section 4.1]).

#### Reduction to Per-Episode Regret

• Let us define regret in episode *k* to be

$$\Delta_k := \sum_{s,a} v_k(s,a)(\rho^* - \bar{r}(s,a)),$$

where  $v_k(s, a) :=$  the number of times a was played in s in episode k.

• Then, the regret can be bounded as,

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_k \Delta_k + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)},$$

with high probability (see [Jaksch et al., 2010, Section 4.1]).

• So to bound regret, we need to bound  $\sum_k \Delta_k$ .

#### **Bound on the Number of Episodes**

$$\Re(M,\mathfrak{A},s_0,T) \leq \left|\sum_k \Delta_k\right| + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$

#### **Bound on the Number of Episodes**

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \boxed{\sum_k \Delta_k} + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$

#### Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode k = 1, 2, ... **do**
- 2: Compute the estimates for rewards and transition probabilities.
- 3: Build the set  $M_k$  of plausible MDPs based on current estimates.
- 4: Find the optimal policy  $\tilde{\pi}_k$  in the optimistic MDP  $\tilde{\mathcal{M}}$  which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- 5: Execute  $\tilde{\pi}_k$  until the visits in some state-action pair have doubled.
- 6: end for

#### **Bound on the Number of Episodes**

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \left|\sum_k \Delta_k\right| + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$

#### Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode k = 1, 2, ... **do**
- 2: Compute the estimates for rewards and transition probabilities.
- 3: Build the set  $M_k$  of plausible MDPs based on current estimates.
- 4: Find the optimal policy  $\tilde{\pi}_k$  in the optimistic MDP  $\tilde{\mathcal{M}}$  which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- Execute  $\tilde{\pi}_k$  until the visits in some state-action pair have doubled.
- 6: end for

Due to the episode stopping criterion, the number of episodes of UCRL2 up to step  ${\cal T}$  are upper bounded as

$$m \le O\left(SA\log_2\left(\frac{8T}{SA}\right)\right)$$
,

where S = |states| and A = |actions| [Jaksch et al., 2010, Appendix C.2].

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \left|\sum_{k=1}^m \Delta_k\right| + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \left| \sum_{k=1}^m \Delta_k \right| + \sqrt{\frac{5}{2} T \log\left(\frac{8T}{\delta}\right)}$$

#### Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode k = 1, 2, ... **do**
- Compute the estimates for rewards and transition probabilities.
- 3: Build the set  $M_k$  of plausible MDPs.
- 4: Find the optimal policy  $\tilde{\pi}_k$  in the optimistic MDP  $\tilde{\mathcal{M}}$  which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- 5: Execute  $\tilde{\pi}_k$  until the visits in some stateaction pair have doubled.
- 6: end for

#### Set of plausible MDPs

The set  $\mathbb M$  of plausible MDPs given the estimates  $\hat r$  and  $\hat p$  is the set of all MDPs with rewards  $\tilde r$  and transition probabilities  $\tilde p$  such that

$$\begin{split} \left|\hat{r}(s,a) - \tilde{r}(s,a)\right| & \leq & \operatorname{conf}_r(s,a), \\ \left\|\hat{\rho}(\cdot|s,a) - \tilde{\rho}(\cdot|s,a)\right\|_1 & \leq & \operatorname{conf}_p(s,a). \end{split}$$

$$\Re(M,\mathfrak{A},s_0,T) \leq \left|\sum_{k=1}^m \Delta_k\right| + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$

#### Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode k = 1, 2, ... **do**
- Compute the estimates for rewards and transition probabilities.
- 3: Build the set  $M_k$  of plausible MDPs.
- 4: Find the optimal policy  $\tilde{\pi}_k$  in the optimistic MDP  $\tilde{\mathcal{M}}$  which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- 5: Execute  $\tilde{\pi}_k$  until the visits in some stateaction pair have doubled.
- 6: end for

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_k \Delta_k + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$

#### Set of plausible MDPs

The set  $\mathbb M$  of plausible MDPs given the estimates  $\hat r$  and  $\hat \rho$  is the set of all MDPs with rewards  $\tilde r$  and transition probabilities  $\tilde \rho$  such that

$$\begin{aligned} \left| \hat{r}(s, a) - \tilde{r}(s, a) \right| &\leq & \operatorname{conf}_{r}(s, a), \\ \left\| \hat{p}(\cdot | s, a) - \tilde{p}(\cdot | s, a) \right\|_{1} &\leq & \operatorname{conf}_{p}(s, a). \end{aligned}$$

$$\mathfrak{R}(\textit{M},\mathfrak{A},s_0,\textit{T}) \leq \left| \sum_{k=1}^{m} \Delta_k \right| + \sqrt{\frac{5}{2} \textit{T} \log \left( \frac{8\textit{T}}{\delta} \right)}$$

#### Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode k = 1, 2, ... **do**
- Compute the estimates for rewards and transition probabilities.
- 3: Build the set  $M_{\nu}$  of plausible MDPs.
- 4: Find the optimal policy  $\tilde{\pi}_k$  in the optimistic MDP  $\tilde{\mathcal{M}}$  which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- 5: Execute  $\tilde{\pi}_k$  until the visits in some stateaction pair have doubled.
- 6: end for

#### Set of plausible MDPs

The set  $\mathbb M$  of plausible MDPs given the estimates  $\hat r$  and  $\hat p$  is the set of all MDPs with rewards  $\tilde r$  and transition probabilities  $\tilde p$  such that

$$\begin{aligned} \left| \hat{r}(s, a) - \tilde{r}(s, a) \right| & \leq & \operatorname{conf}_{r}(s, a), \\ \left\| \hat{\rho}(\cdot | s, a) - \tilde{\rho}(\cdot | s, a) \right\|_{1} & \leq & \operatorname{conf}_{p}(s, a). \end{aligned}$$

$$\mathfrak{R}(M, \mathfrak{A}, s_0, T) \leq \sum_{k} \Delta_k + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta}\right)}$$
$$= \sum_{k, M \notin \mathbb{M}_k} \Delta_k + \sum_{k, M \in \mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta}\right)}$$

$$\Re(M,\mathfrak{A},s_0,T) \leq \left| \sum_{k,M \notin \mathbb{M}_k} \Delta_k \right| + \sum_{k,M \in \mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2} T \log\left(\frac{8T}{\delta}\right)}$$

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \left| \sum_{k,M \notin \mathbb{M}_k} \Delta_k \right| + \sum_{k,M \in \mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2} T \log \left( \frac{8T}{\delta} \right)}$$

• We need to bound  $\mathbb{P}\{M \notin \mathbb{M}(t)\}$  i.e. the probability of mean rewards and transition probabilities in the true MDP M deviating far from their respective estimates. How do we do that?

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \left| \sum_{k,M \notin \mathbb{M}_k} \Delta_k \right| + \sum_{k,M \in \mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta}\right)}$$

- We need to bound  $\mathbb{P}\{M \notin \mathbb{M}(t)\}$  i.e. the probability of mean rewards and transition probabilities in the true MDP M deviating far from their respective estimates. How do we do that?
- The confidence intervals  $\operatorname{conf}_r(s,a)$  and  $\operatorname{conf}_p(s,a)$  for the set  $\mathbb M$  of plausible MDPs are chosen such that

$$\mathbb{P}\{M\notin\mathbb{M}(t)\}\leq\frac{\delta}{15t^6}.$$

where M(t) := set of plausible MDPs using the estimates at time t.

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \left| \sum_{k,M \notin \mathbb{M}_k} \Delta_k \right| + \sum_{k,M \in \mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2} T \log \left( \frac{8T}{\delta} \right)}$$

- We need to bound  $\mathbb{P}\{M \notin \mathbb{M}(t)\}$  i.e. the probability of mean rewards and transition probabilities in the true MDP M deviating far from their respective estimates. How do we do that?
- The confidence intervals  $conf_r(s, a)$  and  $conf_p(s, a)$  for the set M of plausible MDPs are chosen such that

$$\mathbb{P}\{M\notin\mathbb{M}(t)\}\leq\frac{\delta}{15t^6}.$$

where M(t) :=set of plausible MDPs using the estimates at time t.

• Then, it can be shown with high probability,

$$\sum_{k,M\notin\mathbb{M}_k} \Delta_k \leq \sqrt{T}.$$

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta}\right)}$$

$$\sum_{k,M\in\mathbb{M}_k} \Delta_k = \sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (
ho^* - ar{r}(s,a))$$

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta}\right)}$$

$$\sum_{k,M\in\mathbb{M}_k} \Delta_k = \sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\rho^* - \overline{r}(s,a))$$

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log \left( \frac{8T}{\delta} \right)}$$

$$\sum_{k,M\in\mathbb{M}_k} \Delta_k = \sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a)(\rho^* - \bar{r}(s,a))$$

$$= \sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a)(\tilde{\rho}_k - \tilde{r}(s,a)) + \dots$$
Dominating term

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log \left( \frac{8T}{\delta} \right)}$$

$$\sum_{k,M\in\mathbb{M}_k} \Delta_k = \sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\rho^* - \overline{r}(s,a))$$

$$= \underbrace{\sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\widetilde{\rho}_k - \widetilde{r}(s,a))}_{\text{Dominating term}}$$

$$+ \underbrace{\sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\widetilde{r}(s,a) - \overline{r}(s,a))}_{O(S\sqrt{AT\log(T/\delta)})} + \dots$$

$$\Re(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log\left(\frac{8T}{\delta}\right)}$$

$$\begin{split} \sum_{k,M\in\mathbb{M}_k} \Delta_k &= \sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\rho^* - \overline{r}(s,a)) \\ &= \underbrace{\sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\tilde{\rho}_k - \tilde{r}(s,a))}_{\text{Dominating term}} \\ &+ \underbrace{\sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\tilde{r}(s,a) - \overline{r}(s,a))}_{O(S\sqrt{AT\log(T/\delta)})} \\ &+ \underbrace{\sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\rho^* - \tilde{\rho}_k)}_{O(\sqrt{SAT})} \end{split}$$

### **Bounding the Dominating Term**

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log \left( \frac{8T}{\delta} \right)}$$

### **Bounding the Dominating Term**

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log \left( \frac{8T}{\delta} \right)}$$

With high probability,

$$\underbrace{\sum_{k,M\in\mathbb{M}_k}\sum_{s,a}v_k(s,a)(\tilde{\rho}_k-\tilde{r}(s,a))}_{\text{Dominating term}}\leq O(DS\sqrt{AT\log(T/\delta)})$$

## **Bounding the Dominating Term**

$$\Re(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log\left(\frac{8T}{\delta}\right)}$$

With high probability,

$$\underbrace{\sum_{k,M\in\mathbb{M}_k}\sum_{s,a}v_k(s,a)(\tilde{\rho}_k-\tilde{r}(s,a))}_{\text{Dominating term}}\leq O(DS\sqrt{AT\log(T/\delta)})$$

Therefore, with high probability,

$$\sum_{k,M\in\mathbb{M}_k} \Delta_k \le O(DS\sqrt{AT\log(T/\delta)}) + O(S\sqrt{AT\log(T/\delta)}) + O(\sqrt{SAT})$$

$$\le O(DS\sqrt{AT\log(T/\delta)}).$$

(For more details, see [Jaksch et al., 2010, Section 4.3])

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M\notin\mathbb{M}_k} \Delta_k + \sum_{k,M\in\mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \boxed{\sum_{k,M\notin\mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}}$$
$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \boxed{O(\sqrt{T}) + \cdots + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}}$$

$$\begin{split} \mathfrak{R}(M,\mathfrak{A},s_0,T) &\leq \sum_{k,M\notin\mathbb{M}_k} \Delta_k + \left|\sum_{k,M\in\mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)} \\ \mathfrak{R}(M,\mathfrak{A},s_0,T) &\leq O(\sqrt{T}) + \left|O(DS\sqrt{AT\log(T/\delta)})\right| + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)} \end{split}$$

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M\notin\mathbb{M}_k} \Delta_k + \sum_{k,M\in\mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$
$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq O(\sqrt{T}) + O(DS\sqrt{AT\log(T/\delta)}) + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$
$$\leq 34DS\sqrt{AT\log(T/\delta)} \quad \Box$$

#### **Summary**

- Markov decision processes.
- Mathematical setting and a lower bound on regret.
- UCRL2.
- Sketch of the regret analysis.

#### Recall the Objectives from Lecture 1

- To gain an understanding of various reinforcement learning problems and formulate them mathematically. ✓
- To devise solution strategies for these problems. √
- To prove performance guarantees for these solutions. √

### Recall the Objectives from Lecture 1

- To gain an understanding of various reinforcement learning problems and formulate them mathematically. ✓
- To devise solution strategies for these problems. √
- To prove performance guarantees for these solutions. √

### Recall the Objectives from Lecture 1

- To gain an understanding of various reinforcement learning problems and formulate them mathematically. ✓
- To devise solution strategies for these problems. √
- To prove performance guarantees for these solutions. √

#### About Research Project Phase I

- Research project should be of mathematical nature.
- Basic criteria:
  - novelty in the proved results, and/or
  - novelty in the proof techniques.

#### About Research Project Phase II

- From week 4 (Sep 26-30) to week 8 (Oct 24-28), each group is entitled to a single half-hour meeting.
- On Mondays, at Metaforum 09,
  - Time-slot 1: 14:15 14:45
  - Time-slot 2: 14:50 15:20
  - Time-slot 3: 15:25 15:55
  - Time-slot 4: 16:00 16:30

(Except on Oct 10. On Oct 10, the above time-slots shifted to 4 hours earlier i.e., Time-slot 1 from 10:15, Time-slot 2 from 10:50 and Time-slot 3 from 11:25 and Time-slot 4 from 12:00.)

- On Wednesdays, at Matrix 1.122,
  - Time-slot 5: 11:00 11:30
  - Time-slot 6: 11:35 12:05
  - Time-slot 7: 12:10 12:40

#### About Research Project Phase II

- From week 4 (Sep 26-30) to week 8 (Oct 24-28), each group is entitled to a single half-hour meeting.
- On Mondays, at Metaforum 09,
  - Time-slot 1: 14:15 14:45
  - Time-slot 2: 14:50 15:20
  - Time-slot 3: 15:25 15:55
  - Time-slot 4: 16:00 16:30

(Except on Oct 10. On Oct 10, the above time-slots shifted to 4 hours earlier i.e., Time-slot 1 from 10:15, Time-slot 2 from 10:50 and Time-slot 3 from 11:25 and Time-slot 4 from 12:00.)

- On Wednesdays, at Matrix 1.122,
  - Time-slot 5: 11:00 11:30
  - Time-slot 6: 11:35 12:05
  - Time-slot 7: 12:10 12:40

In case of any change in the above schedule, I will inform the concerned groups in advance and we will come up with another time-slot.

#### References i

#### References

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. *Journal of Machine Learning Research*, 11(51):1563–1600, 2010. URL http://jmlr.org/papers/v11/jaksch10a.html.

Martin L. Puterman. *Markov Decision Processes: Discrete Stochastic Dynamic Programming*. John Wiley amp; Sons, Inc., USA, 1st edition, 1994. ISBN 0471619779.