Lecture 5 - Reinforcement Learning in Markov Decision Processes

Pratik Gajane

September 21, 2022

2AMM20 Research Topics in Data Mining Eindhoven University of Technology

- Lecture 1: Introduction to reinforcement learning and its basic elements.
- Lecture 2: Upper confidence bound (UCB) for stationary stochastic bandits and its regret bound. Frequentist perspective.
- Lecture 3: Thompson sampling for stationary stochastic bandits and its regret bound. Bayseian perspective.
- Lecture 4: Non-stationary stochastic bandits, adversarial bandits, dueling bandits and contextual bandits.

- Lecture 1: Introduction to reinforcement learning and its basic elements.
- Lecture 2: Upper confidence bound (UCB) for stationary stochastic bandits and its regret bound. Frequentist perspective.
- Lecture 3: Thompson sampling for stationary stochastic bandits and its regret bound. Bayseian perspective.
- Lecture 4: Non-stationary stochastic bandits, adversarial bandits, dueling bandits and contextual bandits.

- Lecture 1: Introduction to reinforcement learning and its basic elements.
- Lecture 2: Upper confidence bound (UCB) for stationary stochastic bandits and its regret bound. Frequentist perspective.
- Lecture 3: Thompson sampling for stationary stochastic bandits and its regret bound. Bayseian perspective.
- Lecture 4: Non-stationary stochastic bandits, adversarial bandits, dueling bandits and contextual bandits.

- Lecture 1: Introduction to reinforcement learning and its basic elements.
- Lecture 2: Upper confidence bound (UCB) for stationary stochastic bandits and its regret bound. Frequentist perspective.
- Lecture 3: Thompson sampling for stationary stochastic bandits and its regret bound. Bayseian perspective.
- Lecture 4: Non-stationary stochastic bandits, adversarial bandits, dueling bandits and contextual bandits.

Lecture 5: Outline

- Markov decision processes.
- Mathematical setting and a lower bound on regret.
- A near-optimal algorithm UCRL2.
- Regret analysis for UCRL2.

Processes

Introduction to Markov Decision

Markov Decision Process: Simple Example I

A race of robot cars

Image source: UC Berkeley AI course, lecture 10

Markov Decision Process: Simple Example II

Image source: UC Berkeley AI course, lecture 10

 Going faster earns more rewards (usually), but runs the risk of overheating and not finishing the race.
 "To finish first, you must first finish".

Markov Decision Process: Simple Example III

Image source: Data science blog

Mathematical Setting and a

Lower bound on Regret

• Finite set of states S with S = |S|.

- Finite set of states S with S = |S|.
- Finite set of actions A with A = |A|.

- Finite set of states S with S = |S|.
- Finite set of actions A with A = |A|.
- An initial state s_0 .

- Finite set of states S with S = |S|.
- Finite set of actions A with A = |A|.
- An initial state s_0 .
- When action a is executed in state s,
 - the learner receives a random reward drawn from an unknown distribution on [0,1] with mean reward $\overline{r}(s,a)$, and
 - a random transition to s' occurs according to unknown transition probabilities p(s' | s, a).

- Finite set of states S with S = |S|.
- Finite set of actions A with A = |A|.
- An initial state s₀.
- When action a is executed in state s,
 - the learner receives a random reward drawn from an unknown distribution on [0,1] with mean reward $\overline{r}(s,a)$, and
 - a random transition to s' occurs according to unknown transition probabilities p(s' | s, a).
- Why Markov? "The future is independent of the past given the present". (For further understanding, consult slides 38,39 from lecture 1 in this track.)

- $S = \{ \text{State 1, State 2} \}.$
- $A = \{A1, A2\}.$
- Initial state = State 1.
- Binary rewards $= \{0, 1\}.$
- Mean rewards $\bar{r}(s, a)$

	A1	A2
State 1	1	1
State 2	0.5	0.5

- Is A1 better than A2?
- Being in State 1 is more beneficial than being in State 2.

Transition probabilities

- $S = \{ \text{State 1, State 2} \}.$
- $A = \{A1, A2\}.$
- Initial state = State 1.
- Binary rewards $= \{0, 1\}.$
- Mean rewards $\bar{r}(s, a)$

	A1	A2
State 1	1	1
State 2	0.5	0.5

- Is A1 better than A2?
- Being in State 1 is more beneficial than being in State 2.

Transition probabilities

- $S = \{ \text{State 1, State 2} \}.$
- $A = \{A1, A2\}.$
- Initial state = State 1.
- Binary rewards = $\{0,1\}$.
- Mean rewards $\bar{r}(s, a)$

	A1	A2
State 1	1	1
State 2	0.5	0.5

- Is A1 better than A2?
- Being in State 1 is more beneficial than being in State 2.

Transition probabilities

Definition (Diameter)

The $diameter\ D$ of an MDP is the maximal expected time it takes to reach any state from any other state (using an appropriate policy).

Definition (Diameter)

The *diameter D* of an MDP is the maximal expected time it takes to reach any state from any other state (using an appropriate policy).

Note: Typically we consider *communicating* MDPs i.e. with finite *D*.

Definition (Diameter)

The *diameter D* of an MDP is the maximal expected time it takes to reach any state from any other state (using an appropriate policy).

Note: Typically we consider *communicating* MDPs i.e. with finite *D*.

Does this MDP have a finite diameter?

Definition (Diameter)

The *diameter D* of an MDP is the maximal expected time it takes to reach any state from any other state (using an appropriate policy).

Note: Typically we consider *communicating* MDPs i.e. with finite *D*.

Does this MDP have a finite diameter? No. Cannot go from Overheated to Cool or Warm!

Definition (Diameter)

The *diameter D* of an MDP is the maximal expected time it takes to reach any state from any other state (using an appropriate policy).

Note: Typically we consider *communicating* MDPs i.e. with finite *D*.

Does this MDP have a finite diameter?

Definition (Diameter)

The *diameter D* of an MDP is the maximal expected time it takes to reach any state from any other state (using an appropriate policy).

Note: Typically we consider *communicating* MDPs i.e. with finite *D*.

Does this MDP have a finite diameter? Yes. Diameter is 4 as the expected time from Cool to Very warm (and vice versa) is 4.

An algorithm $\mathfrak A$ operating on MDP M with initial state s_0 .

- ullet At each time step t, algorithm ${\mathfrak A}$
 - is in state s(t),
 - performs action a(t), and
 - receives reward r(t).

An algorithm \mathfrak{A} operating on MDP M with initial state s_0 .

- At each time step t, algorithm $\mathfrak A$
 - is in state s(t),
 - performs action a(t), and
 - receives reward r(t).
- Undiscounted accumulated reward,

$$R(M,\mathfrak{A},s_0,T)=\sum_{t=1}^T r(t).$$

An algorithm \mathfrak{A} operating on MDP M with initial state s_0 .

- At each time step t, algorithm $\mathfrak A$
 - is in state s(t),
 - performs action a(t), and
 - receives reward r(t).
- Undiscounted accumulated reward,

$$R(M,\mathfrak{A},s_0,T)=\sum_{t=1}^T r(t).$$

• Discounted accumulated reward with $0 < \gamma < 1$,

$$R(M,\mathfrak{A},s_0,T)=\sum_{t=1}^T\gamma^{t-1}r(t).$$

An algorithm \mathfrak{A} operating on MDP M with initial state s_0 .

- At each time step t, algorithm $\mathfrak A$
 - is in state s(t),
 - performs action a(t), and
 - receives reward r(t).
- Undiscounted accumulated reward,

$$R(M,\mathfrak{A},s_0,T)=\sum_{t=1}^T r(t).$$

• Discounted accumulated reward with $0 < \gamma < 1$,

$$R(M,\mathfrak{A},s_0,T)=\sum_{t=1}^T\gamma^{t-1}r(t).$$

• In this lecture, we consider undiscounted accumulated reward.

Policy

• The learner uses a policy to choose actions.

Policy

- The learner uses a policy to choose actions.
- Policies can be stationary or non-stationary.

Definition (Stationary Policy)

A stationary policy is a mapping from $\pi: \mathcal{S} \to \mathcal{A}$.

Image source: UC Berkeley AI course, lecture 11

ullet The average reward of policy π starting in state s_0 in MDP M is

$$\rho(M, \pi, s_0) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=1}^T r(t) \right]$$

• The average reward of policy π starting in state s_0 in MDP M is

$$\rho(M, \pi, s_0) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=1}^{T} r(t) \right]$$

• The optimal average reward ρ^* is

$$\rho^*(M) = \rho^*(M, s_0) := \max_{\pi} \rho(M, \pi, s_0)$$

• Why the first = in the above? For MDPs with finite diameter, ρ^* does not depend on the initial state [Puterman, 1994, Section 8.3.3].

• The average reward of policy π starting in state s_0 in MDP M is

$$\rho(M, \pi, s_0) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=1}^T r(t) \right]$$

• The optimal average reward ρ^* is

$$\rho^*(M) = \rho^*(M, s_0) := \max_{\pi} \rho(M, \pi, s_0)$$

- Why the first = in the above? For MDPs with finite diameter, ρ^* does not depend on the initial state [Puterman, 1994, Section 8.3.3].
- Optimal policy π^* := a policy that gives optimal average reward ρ^* .

• The average reward of policy π starting in state s_0 in MDP M is

$$\rho(M, \pi, s_0) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=1}^{T} r(t) \right]$$

• The optimal average reward ρ^* is

$$\rho^*(M) = \rho^*(M, s_0) := \max_{\pi} \rho(M, \pi, s_0)$$

- Why the first = in the above? For MDPs with finite diameter, ρ^* does not depend on the initial state [Puterman, 1994, Section 8.3.3].
- Optimal policy π^* := a policy that gives optimal average reward ρ^* .
- When S and A are finite, the rewards are bounded and D is finite, it is sufficient to consider stationary policies as ρ^* can be achieved by a stationary policy [Puterman, 1994].

Value Iteration

How to compute an optimal policy π^* (for example):

Value iteration

- Set $v_0(s) := 0$ for all states $s \in S$.
- For n = 1, 2, ... and all $s \in \mathcal{S}$, set the iterated state values to be

$$v_{n+1}(s) := \max_{a \in A} \left\{ \overline{r}(s,a) + \sum_{s' \in \mathcal{S}} p(s'|s,a) v_n(s') \right\}.$$

Value Iteration

How to compute an optimal policy π^* (for example):

Value iteration

- Set $v_0(s) := 0$ for all states $s \in S$.
- For n = 1, 2, ... and all $s \in \mathcal{S}$, set the iterated state values to be

$$v_{n+1}(s) := \max_{a \in A} \left\{ \overline{r}(s,a) + \sum_{s' \in S} p(s'|s,a) v_n(s') \right\}.$$

Value Iteration

How to compute an optimal policy π^* (for example):

Value iteration

- Set $v_0(s) := 0$ for all states $s \in S$.
- For $n = 1, 2, \ldots$ and all $s \in \mathcal{S}$, set the iterated state values to be

$$v_{n+1}(s) := \max_{a \in A} \left\{ \overline{r}(s,a) + \sum_{s' \in S} p(s'|s,a) v_n(s') \right\}.$$

Convergence (under certain conditions)

For $n \to \infty$, the arg max-actions converge to an optimal policy π^* .

Value Iteration

How to compute an optimal policy π^* (for example):

Value iteration

- Set $v_0(s) := 0$ for all states $s \in S$.
- For n = 1, 2, ... and all $s \in \mathcal{S}$, set the iterated state values to be

$$v_{n+1}(s) := \max_{a \in A} \left\{ \overline{r}(s,a) + \sum_{s' \in S} p(s'|s,a) v_n(s') \right\}.$$

Convergence (under certain conditions)

For $n \to \infty$, the arg max-actions converge to an optimal policy π^* .

Another stopping criterion: Stop the value iteration when the maximum difference between two successive v's \leq some threshold.

Then, the arg-max action policy is near-optimal.

For further information about value iteration and other stopping criteria, click here.

Performance Measure: Regret

How do we define regret usually?
 Regret = optimal cumulative reward - learner's reward.

Performance Measure: Regret

How do we define regret usually?
 Regret = optimal cumulative reward - learner's reward.

Definition (Regret)

The *regret* of an algorithm $\mathfrak A$ in MDP M with initial state s_0 after T steps is

$$\mathfrak{R}(M,\mathfrak{A},s_0,T):=T\rho^*-R(M,\mathfrak{A},s_0,T)=T\rho^*-\sum_{t=1}^{r}r(t),$$

where r(t) is the random reward the algorithm receives at step t.

Note: $T\rho^*$ is a good proxy for the optimal T-step reward [Jaksch et al., 2010, Page 3].

$$\max_{\mathfrak{A}} \mathbb{E}[R(M, \mathfrak{A}, s_o, T)] = T \rho^* + O(D).$$

Lower Bound on Regret

Theorem (Jaksch et al. [2010])

For any algorithm and any natural numbers T, S, A > 1, and $D \ge \log_A S$, there is an MDP M with S states, A actions, and diameter D, such that for any initial state S the expected regret after S steps is of the order

 \sqrt{DSAT} .

Regret

An Algorithm with Near-optimal

Optimism Principle

"The learner should act as if it is in the best plausible world."

Optimism in MDPs: Estimates

• For bandits:

Estimates $\hat{\mu}_a$ for mean reward of each arm a

$$\hat{\mu}_{\textit{a}} \coloneqq \frac{\text{sum of received rewards when playing arm }\textit{a}}{\text{number of times arm }\textit{a} \text{ was played}}.$$

Optimism in MDPs: Estimates

• For bandits:

Estimates $\hat{\mu}_a$ for mean reward of each arm a

$$\hat{\mu}_a \coloneqq \frac{\text{sum of received rewards when playing arm } a}{\text{number of times arm } a \text{ was played}}.$$

• For MDPs:

Estimates for mean rewards and transition probabilities

$$\hat{r}(s,a) := \frac{\text{sum of received rewards when playing } a \text{ in } s}{\text{number of times } a \text{ was played in } s},$$

$$\hat{p}(s'|s,a) := \frac{\text{number of transitions to } s' \text{ when playing } a \text{ in } s}{\text{number of times } a \text{ was played in } s}.$$

Optimism in MDPs: Confidence Intervals

• For bandits:

confidence intervals for reward of each arm

Optimism in MDPs: Confidence Intervals

- For bandits:
 confidence intervals for reward of each arm
- For MDPs: confidence intervals for rewards and transition probabilities

Set of plausible MDPs

The set \mathbb{M} of plausible MDPs given the estimates \hat{r} and $\hat{\rho}$ is the set of all MDPs with rewards \tilde{r} and transition probabilities $\tilde{\rho}$ such that

$$\begin{aligned} \left| \hat{r}(s,a) - \tilde{r}(s,a) \right| &\leq & \operatorname{conf}_{r}(s,a), \\ \left\| \hat{\rho}(\cdot|s,a) - \tilde{\rho}(\cdot|s,a) \right\|_{1} &\leq & \operatorname{conf}_{p}(s,a). \end{aligned}$$

where
$$\|\mathbf{x}\|_1 = \sum |x_i|$$
.

Optimism in MDPs: Policy

• For bandits:

Choose arm with the highest upper confidence bound.

Optimism in MDPs: Policy

• For bandits:

Choose arm with the highest upper confidence bound.

• For MDPs:

Choose an optimistic MDP $\tilde{\mathcal{M}} \in \mathbb{M}$ that promises highest average reward under an optimal policy $\tilde{\pi}$,

where \mathbb{M} is the set of plausible MDPs built using confidence intervals.

 \leadsto Choose optimistic MDP $\tilde{\mathcal{M}} \in \mathbb{M}$ and optimal policy $\tilde{\pi}$ such that

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}) = \max_{\pi, \mathcal{M} \in \mathbb{M}} \rho(\mathcal{M}, \pi).$$

The Optimal Policy in the Optimistic MDP

 \leadsto Choose optimistic MDP $\tilde{\mathcal{M}}\in\mathbb{M}$ and optimal policy $\tilde{\pi}$ such that

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

The Optimal Policy in the Optimistic MDP

 \leadsto Choose optimistic MDP $\tilde{\mathcal{M}} \in \mathbb{M}$ and optimal policy $\tilde{\pi}$ such that

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

Use an extension of value iteration.
 That is, for all states s, set u₀(s) := 0 and

$$u_{i+1}(s) := \max_{a} \left\{ \hat{r}(s,a) + \operatorname{conf}_{r}(s,a) + \max_{p \in \mathcal{P}(s,a)} \left\{ \sum_{s'} p(s')u_{i}(s') \right\} \right\},$$

where $\mathcal{P}(s, a)$ is the set of all plausible transition probabilities.

The Optimal Policy in the Optimistic MDP

 \leadsto Choose optimistic MDP $\tilde{\mathcal{M}} \in \mathbb{M}$ and optimal policy $\tilde{\pi}$ such that

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

• Use an extension of value iteration. That is, for all states s, set $u_0(s) := 0$ and

$$u_{i+1}(s) := \max_{a} \left\{ \hat{r}(s,a) + \operatorname{conf}_{r}(s,a) + \max_{p \in \mathcal{P}(s,a)} \left\{ \sum_{s'} p(s') u_{i}(s') \right\} \right\},$$

where $\mathcal{P}(s, a)$ is the set of all plausible transition probabilities.

• $\max \mathbf{p} \cdot \mathbf{u}_i$ is a linear optimization problem over the convex polytope $\mathcal{P}(s,a)$. So it can be evaluated considering only the finite number of vertices of this polytope.

(For further information, see [Jaksch et al., 2010, Section 3.1].)

Break

We start again after a break.

Recap

Before the break, we saw

- Introduction to Markov decision processes, definitions of average reward, diameter and regret.
- Lower bound for regret of the order \sqrt{DSAT} .
- Optimism principle in MDPs: use confidence intervals for rewards and transition probabilities to build a set of plausible MDPs and then choose an optimal policy in the optimistic MDP.
- How to compute the optimal policy in the optimistic MDP using extended value iteration.

Recap

Before the break, we saw

- Introduction to Markov decision processes, definitions of average reward, diameter and regret.
- Lower bound for regret of the order \sqrt{DSAT} .
- Optimism principle in MDPs: use confidence intervals for rewards and transition probabilities to build a set of plausible MDPs and then choose an optimal policy in the optimistic MDP.
- How to compute the optimal policy in the optimistic MDP using extended value iteration.
- Next, we shall see the algorithm UCRL2 and its regret bound.

 Runs in episodes i.e., a series of time steps – these are used by the algorithm internally.

Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode k = 1, 2, ... **do**
- Compute the estimates for rewards and transition probabilities
- 3: Build the set \mathbb{M}_k of plausible MDPs based on current estimates
- 4: Find an optimal policy $ilde{\pi}_k$ in the optimistic MDP ${\mathcal M}$ which satisfies

$$ho(\mathcal{M}, ilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k}
ho(\mathcal{M}, \pi).$$

- using extended value iteration
- 5: Execute $\tilde{\pi}_{\nu}$ until
- 6: end for

 Runs in episodes i.e., a series of time steps – these are used by the algorithm internally.

Algorithm UCRL2 [Jaksch et al., 2010]

- 1: for episode $k = 1, 2, \ldots$ do
- 2: Compute the estimates for rewards and transition probabilities.
- 3: Build the set \mathbb{M}_k of plausible MDPs based on current estimates
- 4: Find an optimal policy $\tilde{\pi}_k$ in the optimistic MDP \mathcal{M} which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

- using extended value iteration
- 5: Execute $\tilde{\pi}_k$ until
- 6: end for

 Runs in episodes i.e., a series of time steps – these are used by the algorithm internally.

Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode $k = 1, 2, \ldots$ **do**
- 2: Compute the estimates for rewards and transition probabilities.
- 3: Build the set M_k of plausible MDPs based on current estimates.
- 4: Find an optimal policy $\tilde{\pi}_k$ in the optimistic MDP \mathcal{M} which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

- using extended value iteration
- 5: Execute $\tilde{\pi}_k$ unti
- 6: end for

 Runs in episodes i.e., a series of time steps – these are used by the algorithm internally.

Algorithm UCRL2 [Jaksch et al., 2010]

- 1: for episode $k = 1, 2, \ldots$ do
- 2: Compute the estimates for rewards and transition probabilities.
- 3: Build the set M_k of plausible MDPs based on current estimates.
- 4: Find an optimal policy $\tilde{\pi}_k$ in the optimistic MDP $\tilde{\mathcal{M}}$ which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- 5: Execute $\tilde{\pi}_k$ until
- 6: end for

 Runs in episodes i.e., a series of time steps – these are used by the algorithm internally.

Algorithm UCRL2 [Jaksch et al., 2010]

- 1: for episode $k = 1, 2, \ldots$ do
- 2: Compute the estimates for rewards and transition probabilities.
- 3: Build the set M_k of plausible MDPs based on current estimates.
- 4: Find an optimal policy $\tilde{\pi}_k$ in the optimistic MDP $\tilde{\mathcal{M}}$ which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- 5: Execute $\tilde{\pi}_k$ until episode stopping criterion is satisfied .
- 6: end for

 Runs in episodes i.e., a series of time steps – these are used by the algorithm internally.

Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode $k = 1, 2, \ldots$ **do**
- 2: Compute the estimates for rewards and transition probabilities.
- 3: Build the set \mathbb{M}_k of plausible MDPs based on current estimates.
- 4: Find an optimal policy $\tilde{\pi}_k$ in the optimistic MDP $\tilde{\mathcal{M}}$ which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- 5: Execute $\tilde{\pi}_k$ until the visits in some state-action pair have doubled .
- 6: end for
 - $N_k(s, a) := \text{ visits to state action pair } (s, a) \text{ prior to episode } k.$
 - $v_k(s, a) := \text{ visits to state action pair } (s, a) \text{ in episode } k.$

Episode stopping criterion: $v_k(s, a) = \max\{1, N_k(s, a)\}\$ for some (s, a).

Regret Bound for UCRL2

Theorem (Jaksch et al. [2010])

In an MDP with S states, A actions, and diameter D, with probability of at least $1-\delta$ the regret of UCRL2 after T steps is bounded by

$$34 \cdot DS \sqrt{AT \log \left(\frac{T}{\delta}\right)}$$
.

Regret Bound for UCRL2

Theorem (Jaksch et al. [2010])

In an MDP with S states, A actions, and diameter D, with probability of at least $1-\delta$ the regret of UCRL2 after T steps is bounded by

$$34 \cdot DS \sqrt{AT \log \left(\frac{T}{\delta}\right)}$$
.

• Gap of \sqrt{DS} between the lower bound (i.e., \sqrt{DSAT}) and UCRL2 upper bound. So UCRL2 is near-optimal. \odot

Proving the Regret Bound

Proving the Regret Bound for UCB: Roadmap

- Reduce regret to the sum of per episode-regret.
- Bound the number of episodes.
- Bound per-episode regret.

Reduction to Per-Episode Regret

• Let us define regret in episode *k* to be

$$\Delta_k := \sum_{s,a} v_k(s,a) (\rho^* - \bar{r}(s,a)),$$

where $v_k(s, a) :=$ the number of times a was played in s in episode k.

Reduction to Per-Episode Regret

• Let us define regret in episode *k* to be

$$\Delta_k := \sum_{s,a} v_k(s,a)(\rho^* - \overline{r}(s,a)),$$

where $v_k(s, a) :=$ the number of times a was played in s in episode k.

• Then, the regret can be bounded as,

$$\Re(M,\mathfrak{A},s_0,T)\leq \sum_k \Delta_k + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)},$$

with high probability (see [Jaksch et al., 2010, Section 4.1]).

Reduction to Per-Episode Regret

• Let us define regret in episode *k* to be

$$\Delta_k := \sum_{s,a} v_k(s,a)(\rho^* - \bar{r}(s,a)),$$

where $v_k(s, a) :=$ the number of times a was played in s in episode k.

• Then, the regret can be bounded as,

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_k \Delta_k + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)},$$

with high probability (see [Jaksch et al., 2010, Section 4.1]).

• So to bound regret, we need to bound $\sum_k \Delta_k$.

Bound on the Number of Episodes

$$\Re(M,\mathfrak{A},s_0,T) \leq \left|\sum_k \Delta_k\right| + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$

Bound on the Number of Episodes

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \boxed{\sum_k \Delta_k} + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$

Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode k = 1, 2, ... **do**
- 2: Compute the estimates for rewards and transition probabilities.
- 3: Build the set M_k of plausible MDPs based on current estimates.
- 4: Find the optimal policy $\tilde{\pi}_k$ in the optimistic MDP $\tilde{\mathcal{M}}$ which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- 5: Execute $\tilde{\pi}_k$ until the visits in some state-action pair have doubled.
- 6: end for

Bound on the Number of Episodes

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \left|\sum_k \Delta_k\right| + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$

Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode k = 1, 2, ... **do**
- 2: Compute the estimates for rewards and transition probabilities.
- 3: Build the set M_k of plausible MDPs based on current estimates.
- 4: Find the optimal policy $\tilde{\pi}_k$ in the optimistic MDP $\tilde{\mathcal{M}}$ which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- Execute $\tilde{\pi}_k$ until the visits in some state-action pair have doubled.
- 6: end for

Due to the episode stopping criterion, the number of episodes of UCRL2 up to step ${\cal T}$ are upper bounded as

$$m \le O\left(SA\log_2\left(\frac{8T}{SA}\right)\right)$$
,

where S = |states| and A = |actions| [Jaksch et al., 2010, Appendix C.2].

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \left|\sum_{k=1}^m \Delta_k\right| + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \left| \sum_{k=1}^m \Delta_k \right| + \sqrt{\frac{5}{2} T \log\left(\frac{8T}{\delta}\right)}$$

Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode k = 1, 2, ... **do**
- Compute the estimates for rewards and transition probabilities.
- 3: Build the set M_k of plausible MDPs.
- 4: Find the optimal policy $\tilde{\pi}_k$ in the optimistic MDP $\tilde{\mathcal{M}}$ which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- 5: Execute $\tilde{\pi}_k$ until the visits in some stateaction pair have doubled.
- 6: end for

Set of plausible MDPs

The set $\mathbb M$ of plausible MDPs given the estimates $\hat r$ and $\hat p$ is the set of all MDPs with rewards $\tilde r$ and transition probabilities $\tilde p$ such that

$$\begin{split} \left|\hat{r}(s,a) - \tilde{r}(s,a)\right| & \leq & \operatorname{conf}_r(s,a), \\ \left\|\hat{\rho}(\cdot|s,a) - \tilde{\rho}(\cdot|s,a)\right\|_1 & \leq & \operatorname{conf}_p(s,a). \end{split}$$

$$\Re(M,\mathfrak{A},s_0,T) \leq \left|\sum_{k=1}^m \Delta_k\right| + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$

Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode k = 1, 2, ... **do**
- Compute the estimates for rewards and transition probabilities.
- 3: Build the set M_k of plausible MDPs.
- 4: Find the optimal policy $\tilde{\pi}_k$ in the optimistic MDP $\tilde{\mathcal{M}}$ which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- 5: Execute $\tilde{\pi}_k$ until the visits in some stateaction pair have doubled.
- 6: end for

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_k \Delta_k + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$

Set of plausible MDPs

The set $\mathbb M$ of plausible MDPs given the estimates $\hat r$ and $\hat \rho$ is the set of all MDPs with rewards $\tilde r$ and transition probabilities $\tilde \rho$ such that

$$\begin{aligned} \left| \hat{r}(s, a) - \tilde{r}(s, a) \right| &\leq & \operatorname{conf}_{r}(s, a), \\ \left\| \hat{p}(\cdot | s, a) - \tilde{p}(\cdot | s, a) \right\|_{1} &\leq & \operatorname{conf}_{p}(s, a). \end{aligned}$$

$$\mathfrak{R}(\textit{M},\mathfrak{A},s_0,\textit{T}) \leq \left| \sum_{k=1}^{m} \Delta_k \right| + \sqrt{\frac{5}{2} \textit{T} \log \left(\frac{8\textit{T}}{\delta} \right)}$$

Algorithm UCRL2 [Jaksch et al., 2010]

- 1: **for** episode k = 1, 2, ... **do**
- Compute the estimates for rewards and transition probabilities.
- 3: Build the set M_{ν} of plausible MDPs.
- 4: Find the optimal policy $\tilde{\pi}_k$ in the optimistic MDP $\tilde{\mathcal{M}}$ which satisfies

$$\rho(\tilde{\mathcal{M}}, \tilde{\pi}_k) = \max_{\pi, \mathcal{M} \in \mathbb{M}_k} \rho(\mathcal{M}, \pi).$$

using extended value iteration.

- 5: Execute $\tilde{\pi}_k$ until the visits in some stateaction pair have doubled.
- 6: end for

Set of plausible MDPs

The set $\mathbb M$ of plausible MDPs given the estimates $\hat r$ and $\hat p$ is the set of all MDPs with rewards $\tilde r$ and transition probabilities $\tilde p$ such that

$$\begin{aligned} \left| \hat{r}(s, a) - \tilde{r}(s, a) \right| & \leq & \operatorname{conf}_{r}(s, a), \\ \left\| \hat{\rho}(\cdot | s, a) - \tilde{\rho}(\cdot | s, a) \right\|_{1} & \leq & \operatorname{conf}_{p}(s, a). \end{aligned}$$

$$\mathfrak{R}(M, \mathfrak{A}, s_0, T) \leq \sum_{k} \Delta_k + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta}\right)}$$
$$= \sum_{k, M \notin \mathbb{M}_k} \Delta_k + \sum_{k, M \in \mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta}\right)}$$

$$\Re(M,\mathfrak{A},s_0,T) \leq \left| \sum_{k,M \notin \mathbb{M}_k} \Delta_k \right| + \sum_{k,M \in \mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2} T \log\left(\frac{8T}{\delta}\right)}$$

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \left| \sum_{k,M \notin \mathbb{M}_k} \Delta_k \right| + \sum_{k,M \in \mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta} \right)}$$

• We need to bound $\mathbb{P}\{M \notin \mathbb{M}(t)\}$ i.e. the probability of mean rewards and transition probabilities in the true MDP M deviating far from their respective estimates. How do we do that?

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \left| \sum_{k,M \notin \mathbb{M}_k} \Delta_k \right| + \sum_{k,M \in \mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta}\right)}$$

- We need to bound $\mathbb{P}\{M \notin \mathbb{M}(t)\}$ i.e. the probability of mean rewards and transition probabilities in the true MDP M deviating far from their respective estimates. How do we do that?
- The confidence intervals $\operatorname{conf}_r(s,a)$ and $\operatorname{conf}_p(s,a)$ for the set $\mathbb M$ of plausible MDPs are chosen such that

$$\mathbb{P}\{M\notin\mathbb{M}(t)\}\leq\frac{\delta}{15t^6}.$$

where M(t) := set of plausible MDPs using the estimates at time t.

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \left| \sum_{k,M \notin \mathbb{M}_k} \Delta_k \right| + \sum_{k,M \in \mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta} \right)}$$

- We need to bound $\mathbb{P}\{M \notin \mathbb{M}(t)\}$ i.e. the probability of mean rewards and transition probabilities in the true MDP M deviating far from their respective estimates. How do we do that?
- The confidence intervals $conf_r(s, a)$ and $conf_p(s, a)$ for the set M of plausible MDPs are chosen such that

$$\mathbb{P}\{M\notin\mathbb{M}(t)\}\leq\frac{\delta}{15t^6}.$$

where M(t) :=set of plausible MDPs using the estimates at time t.

• Then, it can be shown with high probability,

$$\sum_{k,M\notin\mathbb{M}_k} \Delta_k \leq \sqrt{T}.$$

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta}\right)}$$

$$\sum_{k,M\in\mathbb{M}_k} \Delta_k = \sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (
ho^* - ar{r}(s,a))$$

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta}\right)}$$

$$\sum_{k,M\in\mathbb{M}_k} \Delta_k = \sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\rho^* - \overline{r}(s,a))$$

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta} \right)}$$

$$\sum_{k,M\in\mathbb{M}_k} \Delta_k = \sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a)(\rho^* - \bar{r}(s,a))$$

$$= \sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a)(\tilde{\rho}_k - \tilde{r}(s,a)) + \dots$$
Dominating term

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta} \right)}$$

$$\sum_{k,M\in\mathbb{M}_k} \Delta_k = \sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\rho^* - \overline{r}(s,a))$$

$$= \underbrace{\sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\widetilde{\rho}_k - \widetilde{r}(s,a))}_{\text{Dominating term}}$$

$$+ \underbrace{\sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\widetilde{r}(s,a) - \overline{r}(s,a))}_{O(S\sqrt{AT\log(T/\delta)})} + \dots$$

$$\Re(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log\left(\frac{8T}{\delta}\right)}$$

$$\begin{split} \sum_{k,M\in\mathbb{M}_k} \Delta_k &= \sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\rho^* - \overline{r}(s,a)) \\ &= \underbrace{\sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\tilde{\rho}_k - \tilde{r}(s,a))}_{\text{Dominating term}} \\ &+ \underbrace{\sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\tilde{r}(s,a) - \overline{r}(s,a))}_{O(S\sqrt{AT\log(T/\delta)})} \\ &+ \underbrace{\sum_{k,M\in\mathbb{M}_k} \sum_{s,a} v_k(s,a) (\rho^* - \tilde{\rho}_k)}_{O(\sqrt{SAT})} \end{split}$$

Bounding the Dominating Term

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta} \right)}$$

Bounding the Dominating Term

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log \left(\frac{8T}{\delta} \right)}$$

With high probability,

$$\underbrace{\sum_{k,M\in\mathbb{M}_k}\sum_{s,a}v_k(s,a)(\tilde{\rho}_k-\tilde{r}(s,a))}_{\text{Dominating term}}\leq O(DS\sqrt{AT\log(T/\delta)})$$

Bounding the Dominating Term

$$\Re(M,\mathfrak{A},s_0,T) \leq \sum_{k,M \notin \mathbb{M}_k} \Delta_k + \left| \sum_{k,M \in \mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2} T \log\left(\frac{8T}{\delta}\right)}$$

With high probability,

$$\underbrace{\sum_{k,M\in\mathbb{M}_k}\sum_{s,a}v_k(s,a)(\tilde{\rho}_k-\tilde{r}(s,a))}_{\text{Dominating term}}\leq O(DS\sqrt{AT\log(T/\delta)})$$

Therefore, with high probability,

$$\sum_{k,M\in\mathbb{M}_k} \Delta_k \le O(DS\sqrt{AT\log(T/\delta)}) + O(S\sqrt{AT\log(T/\delta)}) + O(\sqrt{SAT})$$

$$\le O(DS\sqrt{AT\log(T/\delta)}).$$

(For more details, see [Jaksch et al., 2010, Section 4.3])

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M\notin\mathbb{M}_k} \Delta_k + \sum_{k,M\in\mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \boxed{\sum_{k,M\notin\mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}}$$
$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \boxed{O(\sqrt{T}) + \cdots + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}}$$

$$\begin{split} \mathfrak{R}(M,\mathfrak{A},s_0,T) &\leq \sum_{k,M\notin\mathbb{M}_k} \Delta_k + \left|\sum_{k,M\in\mathbb{M}_k} \Delta_k \right| + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)} \\ \mathfrak{R}(M,\mathfrak{A},s_0,T) &\leq O(\sqrt{T}) + \left|O(DS\sqrt{AT\log(T/\delta)})\right| + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)} \end{split}$$

$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq \sum_{k,M\notin\mathbb{M}_k} \Delta_k + \sum_{k,M\in\mathbb{M}_k} \Delta_k + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$
$$\mathfrak{R}(M,\mathfrak{A},s_0,T) \leq O(\sqrt{T}) + O(DS\sqrt{AT\log(T/\delta)}) + \sqrt{\frac{5}{2}T\log\left(\frac{8T}{\delta}\right)}$$
$$\leq 34DS\sqrt{AT\log(T/\delta)} \quad \Box$$

Summary

- Markov decision processes.
- Mathematical setting and a lower bound on regret.
- UCRL2.
- Sketch of the regret analysis.

Recall the Objectives from Lecture 1

- To gain an understanding of various reinforcement learning problems and formulate them mathematically. ✓
- To devise solution strategies for these problems. √
- To prove performance guarantees for these solutions. √

Recall the Objectives from Lecture 1

- To gain an understanding of various reinforcement learning problems and formulate them mathematically. ✓
- To devise solution strategies for these problems. √
- To prove performance guarantees for these solutions. √

Recall the Objectives from Lecture 1

- To gain an understanding of various reinforcement learning problems and formulate them mathematically. ✓
- To devise solution strategies for these problems. √
- To prove performance guarantees for these solutions. √

About Research Project Phase I

- Research project should be of mathematical nature.
- Basic criteria:
 - novelty in the proved results, and/or
 - novelty in the proof techniques.

About Research Project Phase II

- From week 4 (Sep 26-30) to week 8 (Oct 24-28), each group is entitled to a single half-hour meeting.
- On Mondays, at Metaforum 09,
 - Time-slot 1: 14:15 14:45
 - Time-slot 2: 14:50 15:20
 - Time-slot 3: 15:25 15:55
 - Time-slot 4: 16:00 16:30

(Except on Oct 10. On Oct 10, the above time-slots shifted to 4 hours earlier i.e., Time-slot 1 from 10:15, Time-slot 2 from 10:50 and Time-slot 3 from 11:25 and Time-slot 4 from 12:00.)

- On Wednesdays, at Matrix 1.122,
 - Time-slot 5: 11:00 11:30
 - Time-slot 6: 11:35 12:05
 - Time-slot 7: 12:10 12:40

About Research Project Phase II

- From week 4 (Sep 26-30) to week 8 (Oct 24-28), each group is entitled to a single half-hour meeting.
- On Mondays, at Metaforum 09,
 - Time-slot 1: 14:15 14:45
 - Time-slot 2: 14:50 15:20
 - Time-slot 3: 15:25 15:55
 - Time-slot 4: 16:00 16:30

(Except on Oct 10. On Oct 10, the above time-slots shifted to 4 hours earlier i.e., Time-slot 1 from 10:15, Time-slot 2 from 10:50 and Time-slot 3 from 11:25 and Time-slot 4 from 12:00.)

- On Wednesdays, at Matrix 1.122,
 - Time-slot 5: 11:00 11:30
 - Time-slot 6: 11:35 12:05
 - Time-slot 7: 12:10 12:40

In case of any change in the above schedule, I will inform the concerned groups in advance and we will come up with another time-slot.

References i

References

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. *Journal of Machine Learning Research*, 11(51):1563–1600, 2010. URL http://jmlr.org/papers/v11/jaksch10a.html.

Martin L. Puterman. *Markov Decision Processes: Discrete Stochastic Dynamic Programming*. John Wiley amp; Sons, Inc., USA, 1st edition, 1994. ISBN 0471619779.