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A Quick Recap of Lecture 1, 2, 3 and 4

• Lecture 1 : Introduction to reinforcement learning and its basic

elements.

• Lecture 2 : Upper confidence bound (UCB) for stationary stochastic

bandits and its regret bound. Frequentist perspective.

• Lecture 3 : Thompson sampling for stationary stochastic bandits and

its regret bound. Bayseian perspective.

• Lecture 4 : Non-stationary stochastic bandits, adversarial bandits,

dueling bandits and contextual bandits.
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Lecture 5 : Outline

• Markov decision processes.

• Mathematical setting and a lower bound on regret.

• A near-optimal algorithm UCRL2.

• Regret analysis for UCRL2.
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Introduction to Markov Decision

Processes



Markov Decision Process : Simple Example I

A race of robot cars

Image source:UC Berkeley AI course, lecture 10
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https://inst.eecs.berkeley.edu/~cs188/sp20/assets/lecture/lec10.pdf


Markov Decision Process : Simple Example II

Image source:UC Berkeley AI course, lecture 10

• Going faster earns more rewards (usually), but runs the risk of

overheating and not finishing the race.

“To finish first, you must first finish”.
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https://inst.eecs.berkeley.edu/~cs188/sp20/assets/lecture/lec10.pdf


Markov Decision Process : Simple Example III

Image source:Data science blog
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https://towardsdatascience.com/understanding-markov-decision-process-the-framework-behind-reinforcement-learning-4b5166f3c5b4


Mathematical Setting and a

Lower bound on Regret



Mathematical Setting I

• Finite set of states S with S = |S|.

• Finite set of actions A with A = |A|.
• An initial state s0.

• When action a is executed in state s,

• the learner receives a random reward drawn from an unknown

distribution on [0, 1] with mean reward r̄(s, a), and

• a random transition to s ′ occurs according to unknown transition

probabilities p(s ′ | s, a).

• Why Markov? “The future is independent of the past given the

present”. (For further understanding, consult slides 38,39 from lecture 1 in this track.)
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Mathematical Setting II

• S = {State 1, State 2}.
• A = {A1,A2}.
• Initial state = State 1.

• Binary rewards = {0, 1}.
• Mean rewards r̄(s, a)

A1 A2

State 1 1 1

State 2 0.5 0.5

• Is A1 better than A2?

• Being in State 1 is more

beneficial than being in

State 2.

Transition probabilities
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Diameter

Definition (Diameter)

The diameter D of an MDP is the maximal expected time it takes to

reach any state from any other state (using an appropriate policy).

Note: Typically we consider communicating MDPs i.e. with finite D.
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Diameter

Definition (Diameter)

The diameter D of an MDP is the maximal expected time it takes to

reach any state from any other state (using an appropriate policy).

Note: Typically we consider communicating MDPs i.e. with finite D.

Does this MDP have a finite diameter? Yes. Diameter is 4 as the expected

time from Cool to Very warm (and vice versa) is 4.

9



Accumulated Reward

An algorithm A operating on MDP M with initial state s0.

• At each time step t, algorithm A

• is in state s(t),

• performs action a(t), and

• receives reward r(t).

• Undiscounted accumulated reward,

R(M,A, s0,T ) =
T∑
t=1

r(t).

• Discounted accumulated reward with 0 < γ < 1,

R(M,A, s0,T ) =
T∑
t=1

γt−1r(t).

• In this lecture, we consider undiscounted accumulated reward.
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Policy

• The learner uses a policy to choose actions.

• Policies can be stationary or non-stationary.

Definition (Stationary Policy)

A stationary policy is a mapping from π : S → A.

Image source:UC Berkeley AI course, lecture 11

11
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Average Reward

• The average reward of policy π starting in state s0 in MDP M is

ρ(M, π, s0) = lim
T→∞

1

T
E

[
T∑
t=1

r(t)

]

• The optimal average reward ρ∗ is

ρ∗(M) = ρ∗(M, s0) :=max
π

ρ(M, π, s0)

• Why the first = in the above? For MDPs with finite diameter, ρ∗

does not depend on the initial state [Puterman, 1994, Section 8.3.3].

• Optimal policy π∗:= a policy that gives optimal average reward ρ∗.

• When S and A are finite, the rewards are bounded and D is finite, it

is sufficient to consider stationary policies as ρ∗ can be achieved by

a stationary policy [Puterman, 1994].
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Value Iteration

How to compute an optimal policy π∗ (for example):

Value iteration

• Set v0(s) := 0 for all states s ∈ S.
• For n = 1, 2, . . . and all s ∈ S, set the iterated state values to be

vn+1(s) := max
a∈A

{
r̄(s, a) +

∑
s′∈S

p(s ′|s, a)vn(s ′)

}
.

Convergence (under certain conditions)

For n → ∞, the argmax-actions converge to an optimal policy π∗.

Another stopping criterion : Stop the value iteration when the maximum

difference between two successive v ’s ≤ some threshold.

Then, the arg-max action policy is near-optimal.

For further information about value iteration and other stopping criteria, click here.

13
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Performance Measure : Regret

• How do we define regret usually?

Regret = optimal cumulative reward - learner’s reward.

Definition (Regret)

The regret of an algorithm A in MDP M with initial state s0 after T

steps is

R(M,A, s0,T ) := Tρ∗ − R(M,A, so ,T ) = Tρ∗ −
T∑
t=1

r(t),

where r(t) is the random reward the algorithm receives at step t.

Note: Tρ∗ is a good proxy for the optimal T -step reward [Jaksch et al.,

2010, Page 3].

max
A
E[R(M,A, so ,T )] = Tρ∗ + O(D).
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Lower Bound on Regret

Theorem (Jaksch et al. [2010])

For any algorithm and any natural numbers T , S , A > 1, and

D ≥ logA S , there is an MDP M with S states, A actions, and

diameter D, such that for any initial state s the expected regret after T

steps is of the order √
DSAT .

15



An Algorithm with Near-optimal

Regret



Optimism Principle

“The learner should act as if it is in the best plausible world.”

16



Optimism in MDPs : Estimates

• For bandits:

Estimates µ̂a for mean reward of each arm a

µ̂a :=
sum of received rewards when playing arm a

number of times arm a was played
.

• For MDPs:

Estimates for mean rewards and transition probabilities

r̂(s, a) :=
sum of received rewards when playing a in s

number of times a was played in s
,

p̂(s ′|s, a) :=
number of transitions to s ′ when playing a in s

number of times a was played in s
.
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Optimism in MDPs : Confidence Intervals

• For bandits:

confidence intervals for reward of each arm

• For MDPs:

confidence intervals for rewards and transition probabilities

Set of plausible MDPs

The set M of plausible MDPs given the estimates r̂ and p̂ is the set of

all MDPs with rewards r̃ and transition probabilities p̃ such that∣∣r̂(s, a)− r̃(s, a)
∣∣ ≤ conf r (s, a),∥∥p̂(·|s, a)− p̃(·|s, a)

∥∥
1

≤ confp(s, a).

where ∥x∥1 =
∑

|xi |.

18
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Optimism in MDPs : Policy

• For bandits :

Choose arm with the highest upper confidence bound.

• For MDPs :

Choose an optimistic MDP M̃ ∈ M that promises highest average

reward under an optimal policy π̃,

where M is the set of plausible MDPs built using confidence

intervals.

⇝ Choose optimistic MDP M̃ ∈ M and optimal policy π̃ such that

ρ(M̃, π̃) = max
π,M∈M

ρ(M, π).

19
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The Optimal Policy in the Optimistic MDP

⇝ Choose optimistic MDP M̃ ∈ M and optimal policy π̃ such that

ρ(M̃, π̃) = max
π,M∈Mk

ρ(M, π).

• Use an extension of value iteration.

That is, for all states s, set u0(s) := 0 and

ui+1(s) := max
a

{
r̂(s, a) + conf r (s, a) + max

p∈P(s,a)

{∑
s′

p(s ′)ui (s
′)

}}
,

where P(s, a) is the set of all plausible transition probabilities.

• maxp · ui is a linear optimization problem over the convex polytope

P(s, a). So it can be evaluated considering only the finite number of

vertices of this polytope.

(For further information, see [Jaksch et al., 2010, Section 3.1].)
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Break

We start again after a break.

21



Recap

Before the break, we saw

• Introduction to Markov decision processes, definitions of average

reward, diameter and regret.

• Lower bound for regret of the order
√
DSAT .

• Optimism principle in MDPs : use confidence intervals for rewards

and transition probabilities to build a set of plausible MDPs and

then choose an optimal policy in the optimistic MDP.

• How to compute the optimal policy in the optimistic MDP using

extended value iteration.

• Next, we shall see the algorithm UCRL2 and its regret bound.
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Algorithm : UCRL2

• Runs in episodes i.e., a series of time steps – these are used by the

algorithm internally.

Algorithm UCRL2 [Jaksch et al., 2010]

1: for episode k = 1, 2, . . . do
2: Compute the estimates for rewards and transition probabilities.
3: Build the set Mk of plausible MDPs based on current estimates.
4: Find an optimal policy π̃k in the optimistic MDP M̃ which satisfies

ρ(M̃, π̃k) = max
π,M∈Mk

ρ(M, π).

using extended value iteration.
5: Execute π̃k until
6: end for

Nk(s, a) := visits to state action pair (s, a) prior to episode k.

vk(s, a) := visits to state action pair (s, a) in episode k .

Episode stopping criterion : vk(s, a) = max{1,Nk(s, a)} for some (s, a).
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Regret Bound for UCRL2

Theorem (Jaksch et al. [2010])

In an MDP with S states, A actions, and diameter D, with probability

of at least 1− δ the regret of UCRL2 after T steps is bounded by

34 · DS
√
AT log

(
T
δ

)
.

• Gap of
√
DS between the lower bound (i.e.,

√
DSAT ) and UCRL2

upper bound. So UCRL2 is near-optimal.

24



Regret Bound for UCRL2

Theorem (Jaksch et al. [2010])

In an MDP with S states, A actions, and diameter D, with probability

of at least 1− δ the regret of UCRL2 after T steps is bounded by

34 · DS
√
AT log

(
T
δ

)
.

• Gap of
√
DS between the lower bound (i.e.,

√
DSAT ) and UCRL2

upper bound. So UCRL2 is near-optimal.

24



Proving the Regret Bound



Proving the Regret Bound for UCB : Roadmap

• Reduce regret to the sum of per episode-regret.

• Bound the number of episodes.

• Bound per-episode regret.

25



Reduction to Per-Episode Regret

• Let us define regret in episode k to be

∆k :=
∑
s,a

vk(s, a)(ρ
∗ − r̄(s, a)),

where vk(s, a) := the number of times a was played in s in episode k.

• Then, the regret can be bounded as,

R(M,A, s0,T ) ≤
∑
k

∆k +
√

5
2T log

(
8T
δ

)
,

with high probability (see [Jaksch et al., 2010, Section 4.1]).

• So to bound regret, we need to bound
∑

k ∆k .
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Bound on the Number of Episodes

R(M,A, s0,T ) ≤
∑
k

∆k +
√

5
2T log

(
8T
δ

)

Algorithm UCRL2 [Jaksch et al., 2010]

1: for episode k = 1, 2, . . . do
2: Compute the estimates for rewards and transition probabilities.
3: Build the set Mk of plausible MDPs based on current estimates.
4: Find the optimal policy π̃k in the optimistic MDP M̃ which satisfies

ρ(M̃, π̃k ) = max
π,M∈Mk

ρ(M, π).

using extended value iteration.
5: Execute π̃k until the visits in some state-action pair have doubled.
6: end for

Due to the episode stopping criterion, the number of episodes of UCRL2

up to step T are upper bounded as

m ≤ O
(
SA log2

(
8T
SA

))
,

where S = |states| and A = |actions| [Jaksch et al., 2010, Appendix C.2].
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Decomposing the Sum of Per-Episode Regret

R(M,A, s0,T ) ≤
m∑

k=1

∆k +
√

5
2T log

(
8T
δ

)

Algorithm UCRL2 [Jaksch et al., 2010]

1: for episode k = 1, 2, . . . do
2: Compute the estimates for rewards and

transition probabilities.
3: Build the set Mk of plausible MDPs.
4: Find the optimal policy π̃k in the opti-

mistic MDP M̃ which satisfies

ρ(M̃, π̃k ) = max
π,M∈Mk

ρ(M, π).

using extended value iteration.
5: Execute π̃k until the visits in some state-

action pair have doubled.
6: end for

Set of plausible MDPs

The set M of plausible MDPs given the

estimates r̂ and p̂ is the set of all MDPs with

rewards r̃ and transition probabilities p̃ such

that

∣∣r̂(s, a) − r̃(s, a)
∣∣ ≤ conf r (s, a),∥∥p̂(·|s, a) − p̃(·|s, a)

∥∥
1

≤ confp(s, a).

R(M,A, s0,T ) ≤
∑
k

∆k +
√

5
2T log

(
8T
δ

)
=

∑
k,M /∈Mk

∆k +
∑

k,M∈Mk

∆k +
√

5
2T log

(
8T
δ

)
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Dealing with Failing Confidence Regions

R(M,A, s0,T ) ≤
∑

k,M /∈Mk

∆k +
∑

k,M∈Mk

∆k +
√

5
2T log

(
8T
δ

)

• We need to bound P{M /∈ M(t)} i.e. the probability of mean

rewards and transition probabilities in the true MDP M deviating far

from their respective estimates. How do we do that?

• The confidence intervals conf r (s, a) and confp(s, a) for the set M of

plausible MDPs are chosen such that

P{M /∈ M(t)} ≤ δ

15t6
.

where M(t) := set of plausible MDPs using the estimates at time t.

• Then, it can be shown with high probability,∑
k,M /∈Mk

∆k ≤
√
T .

(For more details, see [Jaksch et al., 2010, Section 4.2])
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Isolating the Dominating Term

R(M,A, s0,T ) ≤
∑

k,M /∈Mk

∆k +
∑

k,M∈Mk

∆k +
√

5
2T log

(
8T
δ

)

Recall ρ̃k = Average reward of policy π̃k and r̃ = reward function of a plausible MDP.∑
k,M∈Mk

∆k =
∑

k,M∈Mk

∑
s,a

vk(s, a)(ρ
∗ − r̄(s, a))

=
∑

k,M∈Mk

∑
s,a

vk(s, a)(ρ̃k − r̃(s, a))︸ ︷︷ ︸
Dominating term

+
∑

k,M∈Mk

∑
s,a

vk(s, a)(r̃(s, a)− r̄(s, a))︸ ︷︷ ︸
O(S

√
AT log(T/δ))

+
∑

k,M∈Mk

∑
s,a

vk(s, a)(ρ
∗ − ρ̃k)︸ ︷︷ ︸

O(
√
SAT )
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Bounding the Dominating Term

R(M,A, s0,T ) ≤
∑

k,M /∈Mk

∆k +
∑

k,M∈Mk

∆k +
√

5
2T log

(
8T
δ

)

With high probability,∑
k,M∈Mk

∑
s,a

vk(s, a)(ρ̃k − r̃(s, a))︸ ︷︷ ︸
Dominating term

≤ O(DS
√
AT log(T/δ))

Therefore, with high probability,∑
k,M∈Mk

∆k ≤ O(DS
√
AT log(T/δ)) + O(S

√
AT log(T/δ)) + O(

√
SAT )

≤ O(DS
√
AT log(T/δ)).

(For more details, see [Jaksch et al., 2010, Section 4.3])
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Putting Everything Together

R(M,A, s0,T ) ≤
∑

k,M /∈Mk

∆k +
∑

k,M∈Mk

∆k +
√

5
2T log

(
8T
δ

)

R(M,A, s0,T ) ≤ O(
√
T ) + O(DS

√
AT log(T/δ)) +

√
5
2T log

(
8T
δ

)
≤ 34DS

√
AT log(T/δ)
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Summary

• Markov decision processes.

• Mathematical setting and a lower bound on regret.

• UCRL2.

• Sketch of the regret analysis.
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Recall the Objectives from Lecture 1

• To gain an understanding of various reinforcement learning problems

and formulate them mathematically. ✓

• To devise solution strategies for these problems. ✓

• To prove performance guarantees for these solutions. ✓
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About Research Project Phase I

• Research project should be of mathematical nature.

• Basic criteria :

• novelty in the proved results, and/or

• novelty in the proof techniques.
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About Research Project Phase II

• From week 4 (Sep 26-30) to week 8 (Oct 24-28), each group is

entitled to a single half-hour meeting.

• On Mondays, at Metaforum 09,

• Time-slot 1 : 14:15 - 14:45

• Time-slot 2 : 14:50 - 15:20

• Time-slot 3 : 15:25 - 15:55

• Time-slot 4 : 16:00 - 16:30

(Except on Oct 10. On Oct 10, the above time-slots shifted to 4

hours earlier i.e., Time-slot 1 from 10:15, Time-slot 2 from 10:50

and Time-slot 3 from 11:25 and Time-slot 4 from 12:00.)

• On Wednesdays, at Matrix 1.122,

• Time-slot 5 : 11:00 - 11:30

• Time-slot 6 : 11:35 - 12:05

• Time-slot 7 : 12:10 - 12:40

In case of any change in the above schedule, I will inform the concerned groups in advance and we

will come up with another time-slot.
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