Lecture 4 - Variants of Bandit Problems

Pratik Gajane

September 19, 2022

Eindhoven University of Technology

Introduction

Clarification: About the base of log terms

- Base of log terms is mostly not important in this course.
- We are concerned with the leading terms i.e., whether the regret bound is in terms of T or \sqrt{T} or $\log T$ and not with constants.

Clarification: About the base of log terms

- Base of log terms is mostly not important in this course.
- We are concerned with the leading terms i.e., whether the regret bound is in terms of T or \sqrt{T} or $\log T$ and not with constants.
- For this course, a regret bound of logT is not better than 10logT but a regret bound of 10logT is better than \sqrt{T} .

Clarification: About the base of log terms

- Base of log terms is mostly not important in this course.
- We are concerned with the leading terms i.e., whether the regret bound is in terms of T or \sqrt{T} or $\log T$ and not with constants.
- For this course, a regret bound of logT is not better than 10logT but a regret bound of 10logT is better than \sqrt{T} .

- You can convert the base of a *log* from *e* to 2 or 10 (and vice versa) just with an extra multiplicative constant (see here).
- So the base only affects the constant in the results, and hence it is mostly not important.

A Quick Recap of Lecture 1, 2 and 3

- Lecture 1: Introduction to reinforcement learning and its basic elements.
- Lecture 2: UCB for stationary stochastic bandits and its regret bound. Frequentist perspective.
- Lecture 3: Thompson sampling for stationary stochastic bandits and its regret bound. Bayseian perspective.

A Quick Recap of Lecture 1, 2 and 3

- Lecture 1: Introduction to reinforcement learning and its basic elements.
- Lecture 2: UCB for stationary stochastic bandits and its regret bound. Frequentist perspective.
- Lecture 3: Thompson sampling for stationary stochastic bandits and its regret bound. Bayseian perspective.

A Quick Recap of Lecture 1, 2 and 3

- Lecture 1: Introduction to reinforcement learning and its basic elements.
- Lecture 2: UCB for stationary stochastic bandits and its regret bound. Frequentist perspective.
- Lecture 3: Thompson sampling for stationary stochastic bandits and its regret bound. Bayseian perspective.

Stationary Stochastic Bandits

- Number of arms = K.
- Reward for arm $a \sim X_a$ with mean μ_a .
- $X_1, X_2, ... X_K$ are unknown stationary distributions.
- At each time step t = 1, ..., T, the agent,
 - chooses an arm i(t), and
 - receives a numerical reward $r(t) \sim X_{i(t)}$.

Stationary Stochastic Bandits

- Number of arms = K
- Reward for arm $a \sim X_a$ with mean μ_a .
- $X_1, X_2, \dots X_K$ are unknown stationary distributions.
- At each time step t = 1, ..., T, the agent,
 - chooses an arm i(t), and
 - receives a numerical reward $r(t) \sim X_{i(t)}$.

Stationary Stochastic Bandits

- Number of arms = K
- Reward for arm $a \sim X_a$ with mean μ_a .
- $X_1, X_2, \dots X_K$ are unknown stationary distributions.
- At each time step $t = 1, \dots, T$, the agent.
 - chooses an arm i(t), and
 - receives a numerical reward $r(t) \sim X_{i(t)}$.

Assumptions in our bandit model so far...

Reward distributions are stationary.

Stationary Stochastic Bandits

- Number of arms = K
- Reward for arm $a \sim X_a$ with mean μ_a .
- $X_1, X_2, \dots X_K$ are unknown stationary distributions
- At each time step t = 1, ..., T, the agent,
 - chooses an arm i(t), and
 - receives a numerical reward $r(t) \sim X_{i(t)}$.

- Reward distributions are stationary.
- Rewards are generated by a stochastic process.

Stationary Stochastic Bandits

- Number of arms = K
- Reward for arm $a \sim X_a$ with mean μ_a
- $X_1, X_2, \dots X_K$ are unknown stationary distributions
- At each time step t = 1, ..., T, the agent,
 - chooses an arm i(t), and
 - receives a numerical reward $r(t) \sim X_{i(t)}$.

- Reward distributions are stationary.
- Rewards are generated by a stochastic process.
- Learner can only select one arm at a time and sees absolute feedback.

Stationary Stochastic Bandits

- Number of arms = K
- Reward for arm $a \sim X_a$ with mean μ_a
- $X_1, X_2, \dots X_K$ are unknown stationary distributions
- At each time step t = 1, ..., T, the agent,
 - chooses an arm i(t), and
 - receives a numerical reward $r(t) \sim X_{i(t)}$.

- Reward distributions are stationary.
- Rewards are generated by a stochastic process.
- Learner can only select one arm at a time and sees absolute feedback.
- Learner has no extra information about the arms.

Lecture 4: Outline

- Non-stationary Stochastic Bandits.
- Adversarial Bandits.
- Dueling Bandits (and a Lower Bound)
- Contextual Bandits.

Non-stationary Stochastic

Bandits

Non-stationary Reward Distributions

- Reward distributions are stationary Non-stationary Stochastic Bandits.
- Rewards are assumed to be generated by a stochastic process.
- Learner can only select one arm at a time and sees absolute feedback.
- Learner has no extra information about the arms.

Non-stationary Stochastic Rewards

- Number of arms = K.
- At time step t, Reward for arm $a \sim X_a(t)$ with mean $\mu_a(t)$.
- For some t's, $\mu_a(t) \neq \mu_a(t+1)$.
- How could we characterize these changes?

Characterization of Non-stationarity

- Bound the number of changes.
 - Mean rewards change at unknown time steps called change-points and remain constant between two change-points.
 - Number of change-points $\leq M$.

Characterization of Non-stationarity

- Bound the number of changes.
 - Mean rewards change at unknown time steps called change-points and remain constant between two change-points.
 - Number of change-points $\leq M$.
- Bound the variation in mean rewards.
 - Mean rewards can change an arbitrary number of times, but total variation is bounded i.e.,

$$\max_{a} \sum_{t=1}^{T-1} |\mu_a(t) - \mu_a(t+1)| \leq V.$$

Algorithm for Non-stationary Stochastic Bandits (with a bound on the number of changes)

• Algorithm needs to forget the history before the change.

Algorithm for Non-stationary Stochastic Bandits (with a bound on the number of changes)

- Algorithm needs to forget the history before the change.
- ullet While computing empirical mean rewards, only consider the last au time steps.

Algorithm for Non-stationary Stochastic Bandits (with a bound on the number of changes)

- Algorithm needs to forget the history before the change.
- While computing empirical mean rewards, only consider the last au time steps.
- $\tau =$ size of the window.

Algorithm Sliding Window-UCB algorithm [Garivier and Moulines, 2011]

- 1: **for** t = 1, ..., K **do**
- 2: Choose each arm once.
- 3: end for
- 4: **for** $t = K + 1, \dots$ **do**
- 5: Compute empirical means $\hat{\mu}_1(t-1), \dots, \hat{\mu}_K(t-1)$ based on last τ time steps.
- 6: Select arm $i(t) = \arg\max_{a} [\hat{\mu}_{a}(t-1) + \text{confidence term}].$
- 7: end for

How Does Sliding Window-UCB Work?

 After a change occurs, sliding window forgets the past and considers history from the current setting.

Adversarial Bandits

Adversarial Bandits

- Reward distributions are stationary.
- Rewards are generated by a stochastic process Adversarial bandits.
- Learner can only select one arm at a time and sees absolute feedback.
- Learner has no extra information about the arms.

A bandit game between the learner and an adversary.

A bandit game between the learner and an *adversary*. Horizon T=1 and number of arms =2.

A bandit game between the learner and an *adversary*.

Horizon T = 1 and number of arms = 2.

Learner's goal: Minimize the learner's regret.

A bandit game between the learner and an adversary.

Horizon T = 1 and number of arms = 2.

Learner's goal: Minimize the learner's regret.

Adversary's goal: Maximize the learner's regret.

1. The learner tells their policy to the adversary.

A bandit game between the learner and an *adversary*.

Horizon T = 1 and number of arms = 2.

Learner's goal: Minimize the learner's regret.

- 1. The learner tells their policy to the adversary.
- 2. The learner selects an arm i according to their policy.

A bandit game between the learner and an *adversary*.

Horizon T = 1 and number of arms = 2.

Learner's goal: Minimize the learner's regret.

- 1. The learner tells their policy to the adversary.
- 2. The learner selects an arm i according to their policy.
- 3. The adversary observes the selected arm and secretly chooses rewards,
 - for arm 1, reward x_1 from $\{0,1\}$, and
 - for arm 2, reward x_2 from $\{0,1\}$.

A bandit game between the learner and an *adversary*.

Horizon T = 1 and number of arms = 2.

Learner's goal: Minimize the learner's regret.

- 1. The learner tells their policy to the adversary.
- 2. The learner selects an arm i according to their policy.
- 3. The adversary observes the selected arm and secretly chooses rewards,
 - for arm 1, reward x_1 from $\{0,1\}$, and
 - for arm 2, reward x_2 from $\{0,1\}$.
- 4. The learner receives reward $r = x_i$.

A bandit game between the learner and an *adversary*.

Horizon T = 1 and number of arms = 2.

Learner's goal: Minimize the learner's regret.

- 1. The learner tells their policy to the adversary.
- 2. The learner selects an arm i according to their policy.
- 3. The adversary observes the selected arm and secretly chooses rewards,
 - for arm 1, reward x_1 from $\{0,1\}$, and
 - for arm 2, reward x_2 from $\{0,1\}$.
- 4. The learner receives reward $r = x_i$.
- 5. The regret is $\Re = \max\{x_1, x_2\} r$.

A bandit game between the learner and an *adversary*.

Horizon T = 1 and number of arms = 2.

Learner's goal: Minimize the learner's regret.

Adversary's goal: Maximize the learner's regret.

- 1. The learner tells their policy to the adversary.
- 2. The learner selects an arm i according to their policy.
- 3. The adversary observes the selected arm and secretly chooses rewards,
 - for arm 1, reward x_1 from $\{0,1\}$, and
 - for arm 2, reward x_2 from $\{0,1\}$.
- 4. The learner receives reward $r = x_i$.
- 5. The regret is $\Re = \max\{x_1, x_2\} r$.

No matter what the learner does, the adversary can always cause linear regret for the learner.

Adversarial Rewards with Oblivious Adversary

A bandit game between the learner and the adversary. Horizon T=1 and number of arms =2.

A bandit game between the learner and the adversary. Horizon T=1 and number of arms =2.

1. The learner tells their policy to the the adversary.

- 1. The learner tells their policy to the the adversary.
- 2. The adversary secretly chooses rewards,
 - for arm 1, reward x_1 from $\{0,1\}$, and
 - for arm 2, reward x_2 from $\{0,1\}$.

- 1. The learner tells their policy to the the adversary.
- 2. The adversary secretly chooses rewards,
 - for arm 1, reward x_1 from $\{0,1\}$, and
 - for arm 2, reward x_2 from $\{0,1\}$.
- 3. The learner selects an arm i according to their policy.

- 1. The learner tells their policy to the the adversary.
- 2. The adversary secretly chooses rewards,
 - for arm 1, reward x_1 from $\{0,1\}$, and
 - for arm 2, reward x_2 from $\{0,1\}$.
- 3. The learner selects an arm i according to their policy.
- 4. The learner receives reward $r = x_i$.

- 1. The learner tells their policy to the the adversary.
- 2. The adversary secretly chooses rewards,
 - for arm 1, reward x_1 from $\{0,1\}$, and
 - for arm 2, reward x_2 from $\{0,1\}$.
- 3. The learner selects an arm i according to their policy.
- 4. The learner receives reward $r = x_i$.
- 5. The regret is $\Re = \max\{x_1, x_2\} r$.

A bandit game between the learner and the adversary. Horizon T=1 and number of arms =2.

- 1. The learner tells their policy to the the adversary.
- 2. The adversary secretly chooses rewards,
 - for arm 1, reward x_1 from $\{0,1\}$, and
 - for arm 2, reward x_2 from $\{0,1\}$.
- 3. The learner selects an arm i according to their policy.
- 4. The learner receives reward $r = x_i$.
- 5. The regret is $\Re = \max\{x_1, x_2\} r$.

What happens if the the learner's policy is deterministic?

Oblivious Adversarial Rewards: Deterministic Policy

Adversarial Rewards with Oblivious Adversary

- 1. The learner tells their policy to the the adversary.
- 2. The adversary secretly chooses rewards,
 - for arm 1, reward x_1 from $\{0,1\}$, and
 - for arm 2, reward x_2 from $\{0, 1\}$.
- 3. The learner selects an arm i according to their policy.
- 4. The learner receives reward $r = x_i$.
- 5. The regret is $\Re = \max\{x_1, x_2\} r$.
- If the learner implements a deterministic policy e.g., play arm 1, the adversary can choose $x_1 = 0$ and $x_2 = 1$, since the adversary knows the learner's policy and,

the learner's regret is 1.

Oblivious Adversarial Rewards: Deterministic Policy

Adversarial Rewards with Oblivious Adversary

- 1. The learner tells their policy to the the adversary.
- 2. The adversary secretly chooses rewards,
 - for arm 1, reward x_1 from $\{0, 1\}$, and
 - for arm 2, reward x_2 from $\{0, 1\}$.
- 3. The learner selects an arm i according to their policy.
- 4. The learner receives reward $r = x_i$.
- 5. The regret is $\Re = \max\{x_1, x_2\} r$.
- If the learner implements a deterministic policy e.g., play arm 1,
 the adversary can choose x₁ = 0 and x₂ = 1, since the adversary knows the learner's policy and,
 the learner's regret is 1.
- Deterministic policies cause linear regret!

Oblivious Adversarial Rewards: Randomized Policy

Adversarial Rewards with Oblivious Adversary

- 1. The learner tells their policy to the the adversary.
- 2. The adversary secretly chooses rewards,
 - for arm 1, reward x_1 from $\{0, 1\}$, and
 - for arm 2, reward x_2 from $\{0, 1\}$.
- 3. The learner selects an arm i according to their policy.
- 4. The learner receives reward $r = x_i$.
- 5. The regret is $\Re = \max\{x_1, x_2\} r$.
- If the learner implements a randomized policy (e.g., play arm 1 with probability 0.5),

the best the adversary can do is set $x_1=1$ and $x_2=0$, and the learner's expected regret $=\max\{x_1,x_2\}-\mathbb{E}[r]=1/2$.

Oblivious Adversarial Rewards: Randomized Policy

Adversarial Rewards with Oblivious Adversary

- 1. The learner tells their policy to the the adversary.
- 2. The adversary secretly chooses rewards,
 - for arm 1, reward x_1 from $\{0, 1\}$, and
 - for arm 2, reward x_2 from $\{0, 1\}$.
- 3. The learner selects an arm i according to their policy.
- 4. The learner receives reward $r = x_i$.
- 5. The regret is $\Re = \max\{x_1, x_2\} r$.
- If the learner implements a randomized policy (e.g., play arm 1 with probability 0.5),
 - the best the adversary can do is set $x_1 = 1$ and $x_2 = 0$, and the learner's expected regret $= \max\{x_1, x_2\} \mathbb{E}[r] = 1/2$.
- Randomized policies can achieve sub-linear regret.

• Number of arms = K and time horizon T.

- Number of arms = K and time horizon T.
- The adversary/environment chooses a sequence of reward vectors $\mathbf{x}(t) = (x_1(t), \dots, x_K(t))$ for $t = 1, \dots, T$.

- Number of arms = K and time horizon T.
- The adversary/environment chooses a sequence of reward vectors $\mathbf{x}(t) = (x_1(t), \dots, x_K(t))$ for $t = 1, \dots, T$.
- At time steps $t = 1, \dots, T$,
 - the learner selects an arm i(t);

- Number of arms = K and time horizon T.
- The adversary/environment chooses a sequence of reward vectors $\mathbf{x}(t) = (x_1(t), \dots, x_K(t))$ for $t = 1, \dots, T$.
- At time steps $t = 1, \dots, T$,
 - the learner selects an arm i(t);
 - the learner receives reward $r(t) := x_{i(t)}(t)$.

- Number of arms = K and time horizon T.
- The adversary/environment chooses a sequence of reward vectors $\mathbf{x}(t) = (x_1(t), \dots, x_K(t))$ for $t = 1, \dots, T$.
- At time steps $t = 1, \dots, T$,
 - the learner selects an arm i(t);
 - the learner receives reward $r(t) := x_{i(t)}(t)$.
- Performance measure?

 Recall that for stationary stochastic bandits, the goal was to minimize

$$\mathfrak{R}_{\pi}(au) := \underbrace{ au \mu^*}_{ ext{Optimal expected cumulative reward}} - \underbrace{ ext{E} \left[\sum_{t=1}^{\infty} r(t) \mid \pi
ight]}_{ ext{Expected cumulative reward of } \pi}.$$

 Recall that for stationary stochastic bandits, the goal was to minimize

$$\mathfrak{R}_{\pi}(T) := \underbrace{T\mu^*}_{\text{Optimal expected cumulative reward}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{T} r(t) \mid \pi\right]}_{\text{Expected cumulative reward of } \pi}$$

• Benchmark policy: 'always play the arm with highest mean reward'.

 Recall that for stationary stochastic bandits, the goal was to minimize

$$\mathfrak{R}_{\pi}(T) \coloneqq \underbrace{T\mu^*}_{\text{Optimal expected cumulative reward}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^T r(t) \mid \pi\right]}_{\text{Optimal expected cumulative reward}}$$

Expected cumulative reward of π

- Benchmark policy: 'always play the arm with highest mean reward'.
- Does that make any sense for adversarial rewards?

 Recall that for stationary stochastic bandits, the goal was to minimize

$$\mathfrak{R}_{\pi}(T) := \underbrace{T\mu^*}_{\text{Optimal expected cumulative reward}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^T r(t) \mid \pi\right]}_{\text{Optimal expected cumulative reward}}$$

Expected cumulative reward of π

- Benchmark policy: 'always play the arm with highest mean reward'.
- Does that make any sense for adversarial rewards?

 Recall that for stationary stochastic bandits, the goal was to minimize

$$\mathfrak{R}_{\pi}(T) := \underbrace{T\mu^*}_{\text{Optimal expected cumulative reward}} - \underbrace{\mathbb{E}\left[\sum_{t=1}^T r(t) \mid \pi\right]}_{\text{Optimal expected cumulative reward}}.$$

Expected cumulative reward of π

- Benchmark policy: 'always play the arm with highest mean reward'.
- Does that make any sense for adversarial rewards?
- Competing with the policy that always plays the best arm?

• The benchmark policy: 'always play the best arm (in hindsight)',

the best arm =
$$\underset{a}{\operatorname{arg max}} \sum_{t=1}^{T} x_a(t)$$
.

• The benchmark policy: 'always play the best arm (in hindsight)',

the best arm =
$$\underset{a}{\operatorname{arg max}} \sum_{t=1}^{T} x_a(t)$$
.

• The cumulative reward of the benchmark policy = $\max_{a} \sum_{t=1}^{T} x_a(t)$.

• The benchmark policy: 'always play the best arm (in hindsight)',

the best arm =
$$\underset{a}{\operatorname{arg max}} \sum_{t=1}^{r} x_a(t)$$
.

- ullet The cumulative reward of the benchmark policy $=\max_{a}\sum_{t=1}^{\prime}x_{a}(t).$
- The learner's goal is to minimize the expected cumulative regret.

$$\mathfrak{R}_{\pi}(T) := \max_{a} \sum_{t=1}^{T} x_{a}(t) - \mathbb{E}\left[\sum_{t=1}^{T} r(t) \mid \pi\right]$$

- Assigns weight to each arm.
- ullet $\gamma = {
 m exploration \ parameter.}$
- Weight of the selected arm is updated via an estimator
- Arms producing more rewards receive higher weights.

- 1: For each arm a, initialize $w_a(1) = 1$.
- 2: At time t, for each arm a,

$$p_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

- 3: Pick $i(t) \sim \mathbf{p}(\mathbf{t}) = (p_1, \dots, p_K)$.
- 4: Receive reward $r(t) := x_{i(t)}(t)$.
- 5: **for** a = 1, 2, ..., K **do**

6:
$$\hat{x}_a(t) = \begin{cases} \frac{r(t)}{\rho_a(t)} & \text{if } a = i(t) \\ 0 & \text{otherwise} \end{cases}$$

- 7: $w_a(t+1) \leftarrow w_a(t) \exp\left(\frac{\gamma}{K}\hat{x}_a(t)\right)$.
- 8: end for

- Assigns weight to each arm.
- ullet $\gamma = {
 m exploration \ parameter.}$
- Weight of the selected arm is updated via an estimator
- Arms producing more rewards receive higher weights.

- 1: For each arm a, initialize $w_a(1) = 1$.
- 2: At time t, for each arm a,

$$\rho_{a} \leftarrow (1 - \gamma) \frac{w_{a}(t)}{\sum_{b=1}^{K} w_{b}(t)} + \frac{\gamma}{K}$$

- 3: Pick $i(t) \sim \mathbf{p}(\mathbf{t}) = (p_1, \dots, p_K)$.
- 4: Receive reward $r(t) := x_{i(t)}(t)$.
- 5: **for** a = 1, 2, ..., K **do**

6:
$$\hat{x}_a(t) = \begin{cases} \frac{r(t)}{\rho_a(t)} & \text{if } a = i(t) \\ 0 & \text{otherwise} \end{cases}$$

- 7: $w_a(t+1) \leftarrow w_a(t) \exp\left(\frac{\gamma}{K}\hat{x}_a(t)\right)$.
- 8: end for

- Assigns weight to each arm.
- $\gamma = \text{exploration parameter}.$
- Weight of the selected arm is updated via an estimator
- Arms producing more rewards receive higher weights.

- 1: For each arm a, initialize $w_a(1) = 1$.
- 2: At time t, for each arm a,

$$p_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

- 3: Pick $i(t) \sim p(t) = (p_1, ..., p_K)$.
- 4: Receive reward $r(t) := x_{i(t)}(t)$.
- 5: **for** a = 1, 2, ..., K **do**

6:
$$\hat{x}_a(t) = \begin{cases} \frac{r(t)}{\rho_a(t)} & \text{if } a = i(t) \\ 0 & \text{otherwise} \end{cases}$$

- 7: $w_a(t+1) \leftarrow w_a(t) \exp\left(\frac{\gamma}{K}\hat{x}_a(t)\right)$
- 8: end for

- Assigns weight to each arm.
- \bullet $\gamma =$ exploration parameter.
- Weight of the selected arm is updated via an estimator.
- Arms producing more rewards receive higher weights.

- 1: For each arm a, initialize $w_a(1) = 1$.
- 2: At time t, for each arm a

$$p_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

- 3: Pick $i(t) \sim \mathbf{p}(\mathbf{t}) = (p_1, \dots, p_K)$.
- 4: Receive reward $r(t) := x_{i(t)}(t)$.
- 5: **for** a = 1, 2, ..., K **do**

6:
$$\hat{x}_a(t) = \begin{cases} \frac{r(t)}{\rho_a(t)} & \text{if } a = i(t) \\ 0 & \text{otherwise} \end{cases}$$

- 7: $w_a(t+1) \leftarrow w_a(t) \exp\left(\frac{\gamma}{K} \hat{x}_a(t)\right)$.
- 8: end for

- Assigns weight to each arm.
- $\gamma = \text{exploration parameter}.$
- Weight of the selected arm is updated via an estimator.
- Arms producing more rewards receive higher weights.

- 1: For each arm a, initialize $w_a(1) = 1$.
- 2: At time t, for each arm a,

$$p_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

- 3: Pick $i(t) \sim \mathbf{p}(\mathbf{t}) = (p_1, \dots, p_K)$.
- 4: Receive reward $r(t) := x_{i(t)}(t)$.
- 5: **for** a = 1, 2, ..., K **do**

6:
$$\hat{x}_a(t) = \begin{cases} \frac{r(t)}{p_a(t)} & \text{if } a = i(t) \\ 0 & \text{otherwise} \end{cases}$$

- 7: $w_a(t+1) \leftarrow w_a(t) \exp\left(\frac{\gamma}{\kappa} \hat{x}_a(t)\right)$.
- 8: end for

Regret Bound for EXP3

Theorem (Auer et al. [2003])

The expected cumulative regret of EXP3 is $\mathcal{O}\left(\sqrt{TK\log(K)}\right)$.

Key Lemma in the Regret Analysis

Let "history"

$$\mathcal{F}_t := i(1), i(2), \ldots, i(t-1).$$

- 1: For each arm a, initialize $w_a(1) = 1$.
- 2: At time t, for each arm a,

$$\rho_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

- 3: Pick $i(t) \sim \mathbf{p}(t) = (p_1, \dots, p_K)$.
- 4: Receive reward $r(t) := x_{i(t)}(t)$.
- 5: **for** a = 1, 2, ..., K **do**

6:
$$\hat{x}_a(t) = \begin{cases} \frac{r(t)}{\rho_a(t)} & \text{if } a = i(t) \\ 0 & \text{otherwise} \end{cases}$$

- 7: $w_a(t+1) \leftarrow w_a(t) \cdot \exp \frac{\gamma}{K} \hat{x}_a(t)$.
- 8: end for

Key Lemma in the Regret Analysis

Let "history"

$$\mathcal{F}_t := i(1), i(2), \ldots, i(t-1).$$

Lemma

$$\mathbb{E}[\hat{x}_a(t) \mid \mathcal{F}_t] = x_a(t).$$

• $\hat{x}_a(t)$ estimates the reward of arm a at time t.

Algorithm EXP3 Auer et al. [2003]

- 1: For each arm a, initialize $w_a(1) = 1$.
- 2: At time t, for each arm a,

$$\rho_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

- 3: Pick $i(t) \sim \mathbf{p}(\mathbf{t}) = (p_1, \dots, p_K)$.
- 4: Receive reward $r(t) := x_{i(t)}(t)$.
- 5: **for** a = 1, 2, ..., K **do**

6:
$$\hat{x}_a(t) = \begin{cases} \frac{r(t)}{\rho_a(t)} & \text{if } a = i(t) \\ 0 & \text{otherwise} \end{cases}$$

7:
$$w_a(t+1) \leftarrow w_a(t) \cdot \exp \frac{\gamma}{K} \hat{x}_a(t)$$

8: end for

Key Lemma in the Regret Analysis

Let "history"

$$\mathcal{F}_t := i(1), i(2), \ldots, i(t-1).$$

Lemma

$$\mathbb{E}[\hat{x}_a(t) \mid \mathcal{F}_t] = x_a(t).$$

• $\hat{x}_a(t)$ estimates the reward of arm a at time t.

Proof.

$$\begin{split} \mathbb{E}[\hat{x}_{a}(t)] \\ &= \left[p_{a}(t) \cdot \frac{x_{a}(t)}{p_{a}(t)} + (1 - p_{a}(t)) \cdot 0 \right] \\ &= x_{a}(t) \end{split}$$

- 1: For each arm a, initialize $w_a(1) = 1$.
- 2: At time t, for each arm a,

$$\rho_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

- 3: Pick $i(t) \sim \mathbf{p}(t) = (p_1, \dots, p_K)$.
- 4: Receive reward $r(t) := x_{i(t)}(t)$.
- 5: **for** a = 1, 2, ..., K **do**

6:
$$\hat{x}_a(t) = \begin{cases} \frac{r(t)}{p_a(t)} & \text{if } a = i(t) \\ 0 & \text{otherwise} \end{cases}$$

- 7: $w_a(t+1) \leftarrow w_a(t) \cdot \exp \frac{\gamma}{K} \hat{x}_a(t)$.
- 8: end for

Break

We start again after a break.

Dueling Bandits

Dueling Bandits

- Reward distributions are stationary.
- Rewards are assumed to be generated by a stochastic process.
- Learner can only select one arm at a time and sees absolute feedback Dueling bandits.
- Learner has no extra information about the arms.

Feedback to the Learner?

Figure 1: DuckDuckGo search results

Figure 2: Google search results

• So far, we have assumed the feedback is absolute.

Feedback to the Learner?

Figure 1: DuckDuckGo search results

Figure 2: Google search results

- So far, we have assumed the feedback is absolute.
- What if feedback is relative and not absolute?

Feedback to the Learner?

Figure 1: DuckDuckGo search results

Figure 2: Google search results

- So far, we have assumed the feedback is absolute.
- What if feedback is relative and not absolute?
- Practical scenario: Information retrieval in search engines.

Feedback to the Learner?

Figure 1: DuckDuckGo search results

Figure 2: Google search results

- So far, we have assumed the feedback is absolute.
- What if feedback is relative and not absolute?
- Practical scenario: Information retrieval in search engines.
- Relative feedback by interleaved filtering [Radlinski and Joachims, 2007]

• Number of arms = K and time horizon T.

- Number of arms = K and time horizon T.
- The adversary/environment chooses a sequence of reward vectors $\mathbf{x}(t) = (x_1(t), \dots, x_K(t))$ for $t = 1, \dots, T$.

- Number of arms = K and time horizon T.
- The adversary/environment chooses a sequence of reward vectors $\mathbf{x}(t) = (x_1(t), \dots, x_K(t))$ for $t = 1, \dots, T$.
- At time steps t = 1, ..., T,
 - the learner selects two arms i(t) and j(t);

- Number of arms = K and time horizon T.
- The adversary/environment chooses a sequence of reward vectors $\mathbf{x}(t) = (x_1(t), \dots, x_K(t))$ for $t = 1, \dots, T$.
- At time steps t = 1, ..., T,
 - the learner selects two arms i(t) and j(t);
 - the learner receives (hidden) reward $r(t) := \frac{x_{i(t)}(t) + x_{j(t)}(t)}{2}$; and

- Number of arms = K and time horizon T.
- The adversary/environment chooses a sequence of reward vectors $\mathbf{x}(t) = (x_1(t), \dots, x_K(t))$ for $t = 1, \dots, T$.
- At time steps t = 1, ..., T,
 - the learner selects two arms i(t) and j(t);
 - the learner receives (hidden) reward $r(t) := \frac{x_{j(t)}(t) + x_{j(t)}(t)}{2}$; and
 - the learner sees relative feedback $f(t) := \psi(x_{i(t)} x_{j(t)})$ where ψ is some feedback function.

- Number of arms = K and time horizon T.
- The adversary/environment chooses a sequence of reward vectors $\mathbf{x}(t) = (x_1(t), \dots, x_K(t))$ for $t = 1, \dots, T$.
- At time steps t = 1, ..., T,
 - the learner selects two arms i(t) and j(t);
 - the learner receives (hidden) reward $r(t) := \frac{x_{j(t)}(t) + x_{j(t)}(t)}{2}$; and
 - the learner sees relative feedback $f(t) := \psi(x_{i(t)} x_{j(t)})$ where ψ is some feedback function.
- Performance measure?

• The benchmark policy: 'always play the best arm (in hindsight)'.

- The benchmark policy: 'always play the best arm (in hindsight)'.
- ullet The cumulative reward of the benchmark policy $= \max_a \sum_{t=1}^T x_a(t)$,

- The benchmark policy: 'always play the best arm (in hindsight)'.
- The cumulative reward of the benchmark policy = $\max_{a} \sum_{t=1}^{T} x_a(t)$,
- The learner's goal is to minimize the expected cumulative regret.

$$\mathfrak{R}_{\pi}(T) := \max_{a} \sum_{t=1}^{T} x_{a}(t) - \mathbb{E}\left[\sum_{t=1}^{T} r(t) \mid \pi\right]$$

- The benchmark policy: 'always play the best arm (in hindsight)'.
- The cumulative reward of the benchmark policy = $\max_{a} \sum_{t=1}^{I} x_a(t)$,
- The learner's goal is to minimize the expected cumulative regret.

$$\mathfrak{R}_{\pi}(T) := \max_{a} \sum_{t=1}^{T} x_{a}(t) - \mathbb{E}\left[\sum_{t=1}^{T} r(t) \mid \pi\right]$$

$$= \max_{a} \sum_{t=1}^{T} x_{a}(t) - \mathbb{E}\left[\sum_{t=1}^{T} \frac{x_{i(t)}(t) + x_{j(t)}(t)}{2}\right]$$

(where i(t) and j(t) are the arms picked at time t).

• Lower bound of a problem shows the best performance any algorithm can achieve for that problem.

- Lower bound of a problem shows the best performance any algorithm can achieve for that problem.
- Lower bound tells you the *hardness* of the problem.

- Lower bound of a problem shows the best performance any algorithm can achieve for that problem.
- Lower bound tells you the *hardness* of the problem.
- If upper bound of an algorithm

 ightharpoonup lower bound, then, the algorithm is (close) to optimal.

- Lower bound of a problem shows the best performance any algorithm can achieve for that problem.
- Lower bound tells you the hardness of the problem.
- Form of a typical lower bound: For any algorithm A, there exists an instance of the problem such that regret of A is at least

- Lower bound of a problem shows the best performance any algorithm can achieve for that problem.
- Lower bound tells you the hardness of the problem.
- Form of a typical lower bound: For any algorithm A, there exists an instance of the problem such that regret of A is at least
- Lower bound for stationary stochastic bandits $=\sqrt{\mathit{KT}}$ [Auer et al., 2003]

Problem A is reducible to problem B,
 if an algorithm for solving problem B efficiently could also be used as a subroutine to solve problem A efficiently.

- Problem A is reducible to problem B,
 if an algorithm for solving problem B efficiently could also be used as a subroutine to solve problem A efficiently.
- When this is true, solving A cannot be harder than solving B;
 i.e., solving B is at least as hard as solving A.

For more information, click here.

- Problem A is reducible to problem B,
 if an algorithm for solving problem B efficiently could also be used as a subroutine to solve problem A efficiently.
- When this is true, solving A cannot be harder than solving B;
 i.e., solving B is at least as hard as solving A.

For more information, click here.

Idea: Reduce stationary stochastic bandits to dueling bandits.

- Problem A is reducible to problem B,
 if an algorithm for solving problem B efficiently could also be used as a subroutine to solve problem A efficiently.
- When this is true, solving A cannot be harder than solving B;
 i.e., solving B is at least as hard as solving A.

For more information, click here.

- Idea: Reduce stationary stochastic bandits to dueling bandits.
- Reduction shows that solving dueling bandits is at least as hard as solving stationary stochastic bandits.

- Problem A is reducible to problem B,
 if an algorithm for solving problem B efficiently could also be used as a subroutine to solve problem A efficiently.
- When this is true, solving A cannot be harder than solving B;
 i.e., solving B is at least as hard as solving A.

For more information, click here.

- Idea: Reduce stationary stochastic bandits to dueling bandits.
- Reduction shows that solving dueling bandits is at least as hard as solving stationary stochastic bandits.
- Lower bound for dueling bandits = Lower bound for stationary stochastic bandits.

• A generic dueling bandits algorithm DBA with following procedures: decide() and update().

- A generic dueling bandits algorithm DBA with following procedures: decide() and update().
- A stationary stochastic bandit environment CBE with get_reward() procedure.

- A generic dueling bandits algorithm DBA with following procedures: decide() and update().
- A stationary stochastic bandit environment CBE with get_reward() procedure.

Algorithm Reduction from stationary stochastic bandits

Repeat

- 1: $(i,j) \leftarrow \mathsf{DBA.decide}(\mathsf{t})$.
- 2: $x_i(t) \leftarrow \mathsf{CBE}.\mathsf{get_reward}(i)$.
- 3: $x_j(t+1) \leftarrow \mathsf{CBE}.\mathsf{get_reward}(j)$.
- 4: DBA.update $(t, (i, j), \psi(x_i x_j))$.
- 5: t = t + 2.

Until t > T

- A generic dueling bandits algorithm DBA with following procedures: decide() and update().
- A stationary stochastic bandit environment CBE with get_reward() procedure.

Algorithm Reduction from stationary stochastic bandits

Repeat

- 1: $(i,j) \leftarrow \mathsf{DBA}.\mathsf{decide}(\mathsf{t})$.
- 2: $x_i(t) \leftarrow CBE.get_reward(i)$.
- 3: $x_i(t+1) \leftarrow \mathsf{CBE}.\mathsf{get_reward}(j)$.
- 4: DBA.update $(t, (i, j), \psi(x_i x_j))$.
- 5: t = t + 2.

Until $t \geq T$

ullet Cumulative reward of DBA $= \mathbb{E}\left[\sum_t rac{x_i(t) + x_j(t+1)}{2}
ight]$

- A generic dueling bandits algorithm DBA with following procedures: decide() and update().
- A stationary stochastic bandit environment CBE with get_reward() procedure.

Algorithm Reduction from stationary stochastic bandits

Repeat

- 1: $(i,j) \leftarrow \mathsf{DBA.decide}(\mathsf{t})$.
- 2: $x_i(t) \leftarrow \mathsf{CBE}.\mathsf{get_reward}(i)$.
- 3: $x_j(t+1) \leftarrow \mathsf{CBE}.\mathsf{get_reward}(j)$.
- 4: DBA.update $(t, (i, j), \psi(x_i x_j))$.
- 5: t = t + 2.

Until $t \geq T$

- Cumulative reward of DBA = $\mathbb{E}\left[\sum_t \frac{x_i(t) + x_j(t+1)}{2}\right]$
- \mathbb{E} [CB cumulative reward of above procedure] = $\mathbb{E}[\sum_t x_i(t) + x_j(t+1)] = 2 * \mathbb{E}$ [cumulative reward of DBA]

- A generic dueling bandits algorithm DBA with following procedures: decide() and update().
- A stationary stochastic bandit environment CBE with get_reward() procedure.

Algorithm Reduction from stationary stochastic bandits

Repeat

- 1: $(i,j) \leftarrow \mathsf{DBA}.\mathsf{decide}(\mathsf{t})$.
- 2: $x_i(t) \leftarrow \mathsf{CBE}.\mathsf{get_reward}(i)$.
- 3: $x_i(t+1) \leftarrow \mathsf{CBE}.\mathsf{get_reward}(j)$.
- 4: DBA.update $(t, (i, j), \psi(x_i x_j))$.
- 5: t = t + 2.

Until t > T

- Cumulative reward of DBA = $\mathbb{E}\left[\sum_t \frac{x_i(t) + x_j(t+1)}{2}\right]$
- \mathbb{E} [CB cumulative reward of above procedure] = $\mathbb{E}[\sum_t x_i(t) + x_j(t+1)] = 2 * \mathbb{E}$ [cumulative reward of DBA]
- $\mathbb{E}[Regret \text{ of DBA}]$ is of the same order as $\mathbb{E}[Regret \text{ of CB}]$.

- Assigns weight to each arm.
- Higher weight

 higher selection probability.
- $\gamma \in (0, 0.5)$ exploration parameter.
- Weights of the selected arms are updated.
- Arms winning more duels receive higher weights.

Algorithm REX3 (PG et al.)

1: For each arm a, initialize weights

$$w_a(1) = 1.$$

2: At time t, for each arm a,

$$p_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

$$i,j \sim \mathbf{p(t)} = (p_1,\ldots,p_K),$$

get
$$f(t) = \psi(x_i - x_j)$$
.

4:
$$w_i(t+1) \leftarrow w_i(t) \cdot e^{\frac{\gamma}{K} \frac{f(t)}{2p_i}}$$

 $w_i(t+1) \leftarrow w_i(t) \cdot e^{-\frac{\gamma}{K} \frac{f(t)}{2p_i}}$

- Assigns weight to each arm.
- Higher weight

 higher selection probability.
- $\gamma \in (0, 0.5)$ exploration parameter.
- Weights of the selected arms are updated.
- Arms winning more duels receive higher weights.

Algorithm REX3 (PG et al.)

1: For each arm a, initialize weights

$$w_a(1) = 1.$$

2: At time t, for each arm a,

$$p_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

$$i,j \sim \mathbf{p(t)} = (p_1,\ldots,p_K),$$

get
$$f(t) = \psi(x_i - x_j)$$
.
4: $w_i(t+1) \leftarrow w_i(t) \cdot e^{\frac{\gamma}{K} \frac{f(t)}{2p_i}}$

- Assigns weight to each arm.
- $\gamma \in (0, 0.5)$ exploration parameter.
- Weights of the selected arms are updated.
- Arms winning more duels receive higher weights.

Algorithm REX3 (PG et al.)

1: For each arm a, initialize weights

$$w_a(1) = 1.$$

2: At time t, for each arm a,

$$p_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

$$i,j \sim \mathbf{p(t)} = (p_1,\ldots,p_K),$$

$$get f(t) = \psi(x_i - x_j).$$

4:
$$w_i(t+1) \leftarrow w_i(t) \cdot e^{\frac{\gamma}{K} \frac{f(t)}{2p_i}}$$

 $w_j(t+1) \leftarrow w_j(t) \cdot e^{-\frac{\gamma}{K} \frac{f(t)}{2p_j}}$

- Assigns weight to each arm.
- Higher weight

 higher selection probability.
- $\gamma \in (0, 0.5)$ exploration parameter.
- Weights of the selected arms are updated.
- Arms winning more duels receive higher weights.

Algorithm REX3 (PG et al.)

1: For each arm a, initialize weights

$$w_a(1)=1.$$

2: At time t, for each arm a,

$$\rho_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

$$i,j \sim \mathbf{p(t)} = (p_1,\ldots,p_K),$$

get
$$f(t) = \psi(x_i - x_j)$$
.

4:
$$w_i(t+1) \leftarrow w_i(t) \cdot e^{\frac{\gamma}{K} \frac{f(t)}{2p_i}}$$

 $w_i(t+1) \leftarrow w_i(t) \cdot e^{-\frac{\gamma}{K} \frac{f(t)}{2p_i}}$

How Does REX3 Work?

Weights at
$$t = 0$$
 $(\gamma = 0.4)$

 Update weight according to (relative) feedback.

Algorithm REX3

1: For each arm a, initialize weights

$$w_a(1) = 1.$$

2: At time t, for each arm a,

$$p_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

$$i,j \sim \mathbf{p(t)} = (p_1,\ldots,p_K),$$

$$get f(t) = \psi(x_i - x_j).$$

4:
$$w_i(t+1) \leftarrow w_i(t) \cdot e^{\frac{\gamma}{K} \frac{f(t)}{2p_i}}$$

 $w_i(t+1) \leftarrow w_i(t) \cdot e^{-\frac{\gamma}{K} \frac{f(t)}{2p_i}}$

How Does REX3 Work?

$$i = 1$$
, $j = 2$
1 wins the duel
Weights at $t = 1$

• Weight may decrease.

Algorithm REX3

1: For each arm a, initialize weights

$$w_a(1) = 1.$$

2: At time t, for each arm a,

$$p_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

$$i,j \sim \mathbf{p(t)} = (p_1,\ldots,p_K),$$

get
$$f(t) = \psi(x_i - x_j)$$
.

4:
$$w_i(t+1) \leftarrow w_i(t) \cdot e^{\frac{\gamma}{K} \frac{f(t)}{2p_i}}$$

 $w_i(t+1) \leftarrow w_i(t) \cdot e^{-\frac{\gamma}{K} \frac{f(t)}{2p_i}}$

How Does REX3 Work?

$$i = 1, j = 3$$

1 wins the duel
Weights at $t = 2$

 Weights increase at arms which win regularly.

Algorithm REX3

1: For each arm a, initialize weights

$$w_a(1) = 1.$$

2: At time t, for each arm a,

$$p_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

$$i,j \sim \mathbf{p(t)} = (p_1,\ldots,p_K),$$

get
$$f(t) = \psi(x_i - x_j)$$
.

4:
$$w_i(t+1) \leftarrow w_i(t) \cdot e^{\frac{\gamma}{K} \frac{f(t)}{2p_i}}$$

 $w_j(t+1) \leftarrow w_j(t) \cdot e^{-\frac{\gamma}{K} \frac{f(t)}{2p_j}}$

Regret Upper Bound for REX3

Theorem (PG et al., 2015)

The expected cumulative regret of REX3 is $\mathcal{O}\left(\sqrt{TK\log(K)}\right)$.

Regret Upper Bound for REX3

Theorem (PG et al., 2015)

The expected cumulative regret of REX3 is $\mathcal{O}\left(\sqrt{TK\log(K)}\right)$.

• The upper bound is only $\sqrt{\log(K)}$ away than the lower bound \sqrt{KT} so REX3 is near-optimal.

Analysis

• binary rewards i.e.,

$$x_a(t) = \text{either 0 or 1},$$

for all arms a and all time steps t.

Analysis

• binary rewards i.e.,

$$x_a(t) = \text{either 0 or 1},$$

for all arms a and all time steps t.

ullet Feedback function ψ is identity i.e., when arms i and j are selected,

$$\mathsf{feedback} = f \coloneqq \psi(x_i - x_j) = x_i - x_j$$

Analysis

binary rewards i.e.,

$$x_a(t) = \text{either 0 or 1},$$

for all arms a and all time steps t.

ullet Feedback function ψ is identity i.e., when arms i and j are selected,

$$feedback = f := \psi(x_i - x_j) = x_i - x_j$$

When when arms i and j are selected,

feedback =
$$f = \begin{cases} -1 & \text{if } x_i < x_j \\ 0 & \text{if } x_i = x_j \\ +1 & \text{if } x_i > x_j \end{cases}$$

Estimator for an arm

Algorithm REX3

1: For each arm a, initialize weights

$$w_a(1) = 1.$$

2: At time t, for each arm a,

$$p_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

$$i, j \sim \mathbf{p(t)} = (p_1, \dots, p_K),$$

get $f(t) = \psi(x_i - x_j).$

4:
$$w_i(t+1) \leftarrow w_i(t) \cdot e^{\frac{\gamma}{K} \frac{f(t)}{2p_i}}$$

 $w_j(t+1) \leftarrow w_j(t) \cdot e^{-\frac{\gamma}{K} \frac{f(t)}{2p_j}}$

Estimator for an arm

Let

$$\hat{c}_{a}(t) := \mathbb{I}[a = i] \frac{(x_{i} - x_{j})}{2p_{i}} + \mathbb{I}[a = j] \frac{(x_{j} - x_{i})}{2p_{j}}$$

where i and j are the arms picked at time t.

Algorithm REX3

1: For each arm a, initialize weights

$$w_a(1)=1.$$

2: At time t, for each arm a,

$$p_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

$$i,j \sim \mathbf{p(t)} = (p_1,\ldots,p_K),$$

get
$$f(t) = \psi(x_i - x_j)$$
.

4:
$$w_i(t+1) \leftarrow w_i(t) \cdot e^{\frac{\gamma_i}{K} \frac{\gamma_i(t)}{2p_i}}$$

 $w_i(t+1) \leftarrow w_i(t) \cdot e^{-\frac{\gamma_i}{K} \frac{f(t)}{2p_i}}$

Estimator for an arm

Let

$$\hat{c}_{a}(t) := \mathbb{I}[a = i] \frac{(x_{i} - x_{j})}{2p_{i}} + \mathbb{I}[a = j] \frac{(x_{j} - x_{i})}{2p_{j}}$$

where i and j are the arms picked at time t.

• Step 4 is equivalent to: for each arm *a*,

$$w_a(t+1) = w_a(t) \cdot e^{\frac{\gamma}{K}\hat{c}_a(t)}$$

Algorithm REX3

1: For each arm a, initialize weights

$$w_a(1)=1$$

2: At time t, for each arm a,

$$p_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

$$i,j \sim \mathbf{p(t)} = (p_1,\ldots,p_K),$$

get
$$f(t) = \psi(x_i - x_j)$$
.

4:
$$w_i(t+1) \leftarrow w_i(t) \cdot e^{\frac{\gamma}{K} \frac{f(t)}{2p_i}}$$

$$w_j(t+1) \leftarrow w_j(t) \cdot e^{-\frac{\gamma}{K} \frac{f(t)}{2p_j}}$$

Main Lemma

• Step 4 is equivalent to: for each arm *a*,

$$w_a(t+1) = w_a(t) \cdot e^{\frac{\gamma}{K}\hat{c}_a(t)}$$

Algorithm REX3

1: For each arm a, initialize weights

$$w_a(1) = 1.$$

2: At time t, for each arm a,

$$p_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

$$i,j \sim \mathbf{p(t)} = (p_1,\ldots,p_K),$$

get
$$f(t) = \psi(x_i - x_j)$$
.

4:
$$w_i(t+1) \leftarrow w_i(t) \cdot e^{\frac{\gamma}{K} \frac{f(t)}{2p_i}}$$

 $w_i(t+1) \leftarrow w_i(t) \cdot e^{-\frac{\gamma}{K} \frac{f(t)}{2p_i}}$

Main Lemma

• Step 4 is equivalent to: for each arm *a*,

$$w_a(t+1) = w_a(t) \cdot e^{\frac{\gamma}{K}\hat{c}_a(t)}$$

Let
$$\mathcal{F}_t := i(1), j(1), \ldots, i(t), j(t).$$

Algorithm REX3

1: For each arm a, initialize weights

$$w_a(1)=1.$$

2: At time t, for each arm a,

$$p_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

$$i,j \sim \mathbf{p(t)} = (p_1,\ldots,p_K),$$

get
$$f(t) = \psi(x_i - x_j)$$
.

4:
$$w_i(t+1) \leftarrow w_i(t) \cdot e^{\frac{\gamma}{K} \frac{f(t)}{2p_i}}$$

 $w_i(t+1) \leftarrow w_i(t) \cdot e^{-\frac{\gamma}{K} \frac{f(t)}{2p_i}}$

Main Lemma

• Step 4 is equivalent to: for each arm *a*,

$$w_a(t+1) = w_a(t) \cdot e^{\frac{\gamma}{K}\hat{c}_a(t)}$$

Let
$$\mathcal{F}_t := i(1), j(1), \dots, i(t), j(t).$$

Lemma (Lemma 1 in PG et al.)

$$\mathbb{E}[\hat{c}_{a}(t) \mid \mathcal{F}_{t}] = \\ \mathbb{E}_{i \sim p(t)}[x_{a}(t) - x_{i}(t)].$$

 ĉ_a(t) estimates the relative utility/advantage of picking arm a instead of picking an arm according to p(t).

Algorithm REX3

1: For each arm a, initialize weights

$$w_a(1) = 1.$$

2: At time t, for each arm a,

$$\rho_a \leftarrow (1 - \gamma) \frac{w_a(t)}{\sum_{b=1}^K w_b(t)} + \frac{\gamma}{K}$$

$$i,j \sim \mathbf{p(t)} = (p_1,\ldots,p_K),$$

$$get f(t) = \psi(x_i - x_j).$$

4:
$$w_i(t+1) \leftarrow w_i(t) \cdot e^{\frac{\gamma}{K} \frac{f(t)}{2p_i}}$$

 $w_j(t+1) \leftarrow w_j(t) \cdot e^{-\frac{\gamma}{K} \frac{f(t)}{2p_j}}$

Lemma (Lemma 1 in in PG et al.)

$$\mathbb{E}[\hat{c}_{a}(t) \mid \mathcal{F}_{t}] = \mathbb{E}_{i \sim p(t)}[x_{a}(t) - x_{i}(t)].$$

Proof.

$$\mathbb{E}[\hat{c}_a(t) \mid \mathcal{F}_t] = \mathbb{E}_{i \sim \mathbf{p}(t)}[x_a(t) - x_i(t)].$$

Proof. Recall number of arms
$$= K$$
, $\mathbf{p}(\mathbf{t}) = \text{arm}$ selection probabilities, $\mathbb{E}[x] := \sum_i i \cdot \mathbb{P}(x=i)$ and $\hat{\mathbf{c}}_a(\mathbf{t}) := \mathbb{I}[a=i] \frac{(x_i - x_j)}{2p_i} + \mathbb{I}[a=j] \frac{(x_j - x_i)}{2p_j}$.

$$\mathbb{E}[\hat{c}_{a}(t) \mid \mathcal{F}_{t}] = \mathbb{E}_{i \sim \mathbf{p}(t)}[x_{a}(t) - x_{i}(t)].$$

Proof. Recall number of arms =
$$K$$
, $\mathbf{p}(\mathbf{t})$ = arm selection probabilities, $\mathbb{E}[x] := \sum_i i \cdot \mathbb{P}(x = i)$ and $\hat{c}_a(\mathbf{t}) := \mathbb{I}[a = i] \frac{(x_i - x_j)}{2p_i} + \mathbb{I}[a = j] \frac{(x_j - x_i)}{2p_j}$.

$$\mathbb{E}_{(i,j)\sim p(t)}[\hat{c}_{a}(t)] = \sum_{m=1}^{K} \sum_{n=1}^{K} p_{m} p_{n} \left[\mathbb{I}[a=m] \frac{(x_{m}-x_{n})}{2p_{m}} + \mathbb{I}[a=n] \frac{(x_{n}-x_{m})}{2p_{n}} \right]$$

$$\mathbb{E}[\hat{c}_a(t) \mid \mathcal{F}_t] = \mathbb{E}_{i \sim \mathbf{p}(t)}[x_a(t) - x_i(t)].$$

Proof. Recall number of arms
$$= K$$
, $\mathbf{p}(\mathbf{t}) = \text{arm selection probabilities}$, $\mathbb{E}[x] := \sum_i i \cdot \mathbb{P}(x=i)$ and $\hat{\mathbf{c}}_a(\mathbf{t}) := \mathbb{I}[a=i] \frac{(x_i - x_j)}{2p_i} + \mathbb{I}[a=j] \frac{(x_j - x_i)}{2p_j}$.
$$\mathbb{E}_{(i,j) \sim \mathbf{p}(\mathbf{t})} [\hat{\mathbf{c}}_a(\mathbf{t})] = \sum_{m=1}^K \sum_{n=1}^K p_m p_n \left[\mathbb{I}[a=m] \frac{(x_m - x_n)}{2p_m} + \mathbb{I}[a=n] \frac{(x_n - x_m)}{2p_n} \right]$$
$$= \sum_{m=1}^K \sum_{n=1}^K p_m p_n \mathbb{I}[a=m] \frac{(x_m - x_n)}{2p_m}$$
$$+ \sum_{m=1}^K \sum_{n=1}^K p_m p_n \mathbb{I}[a=n] \frac{(x_n - x_m)}{2p_m}$$

$$\mathbb{E}[\hat{c}_a(t) \mid \mathcal{F}_t] = \mathbb{E}_{i \sim \mathbf{p}(t)}[x_a(t) - x_i(t)].$$

Proof. Recall number of arms
$$= K$$
, $\mathbf{p}(\mathbf{t}) = \text{arm selection probabilities}$, $\mathbb{E}[x] := \sum_i i \cdot \mathbb{P}(x=i)$ and $\hat{c}_a(t) := \mathbb{I}[a=i] \frac{(x_i - x_j)}{2p_i} + \mathbb{I}[a=j] \frac{(x_j - x_i)}{2p_j}$.

$$\mathbb{E}_{(i,j) \sim \mathbf{p}(\mathbf{t})} [\hat{c}_a(t)] = \sum_{m=1}^K \sum_{n=1}^K p_m p_n \left[\mathbb{I}[a=m] \frac{(x_m - x_n)}{2p_m} + \mathbb{I}[a=n] \frac{(x_n - x_m)}{2p_n} \right]$$

$$= \sum_{m=1}^K \sum_{n=1}^K p_m p_n \mathbb{I}[a=m] \frac{(x_m - x_n)}{2p_m}$$

$$+ \sum_{m=1}^K \sum_{n=1}^K p_m p_n \mathbb{I}[a=n] \frac{(x_n - x_m)}{2p_m}$$

$$= \sum_{n=1}^K p_n \frac{(x_a - x_n)}{2} + \sum_{m=1}^K p_m \frac{(x_a - x_m)}{2}$$

$$\mathbb{E}[\hat{c}_{a}(t) \mid \mathcal{F}_{t}] = \mathbb{E}_{i \sim \mathbf{p(t)}}[x_{a}(t) - x_{i}(t)].$$

Proof. Recall number of arms
$$= K$$
, $\mathbf{p}(\mathbf{t}) = \text{arm selection probabilities}$, $\mathbb{E}[x] := \sum_{i} i \cdot \mathbb{P}(x = i)$ and $\hat{c}_{a}(t) := \mathbb{I}[a = i] \frac{(x_{i} - x_{j})}{2p_{i}} + \mathbb{I}[a = j] \frac{(x_{j} - x_{i})}{2p_{j}}$.

$$\mathbb{E}[x] := \sum_{i} i \cdot \mathbb{P}(x = i) \text{ and } \hat{c}_{a}(t) := \mathbb{I}[a = i] \frac{(x_{m} - x_{n})}{2p_{m}} + \mathbb{I}[a = j] \frac{(x_{n} - x_{m})}{2p_{n}}$$

$$= \sum_{m=1}^{K} \sum_{n=1}^{K} p_{m} p_{n} \mathbb{I}[a = m] \frac{(x_{m} - x_{n})}{2p_{m}}$$

$$= \sum_{m=1}^{K} \sum_{n=1}^{K} p_{m} p_{n} \mathbb{I}[a = n] \frac{(x_{n} - x_{m})}{2p_{m}}$$

$$= \sum_{n=1}^{K} p_{n} \frac{(x_{a} - x_{n})}{2} + \sum_{m=1}^{K} p_{m} \frac{(x_{a} - x_{m})}{2}$$

$$= \mathbb{E}[x_{a}(t) - x_{i}(t)].$$

Contextual Bandits

Contextual Bandits

- Reward distributions are stationary.
- Rewards are assumed to be generated by a stochastic process.
- Learner can only select one arm at a time and sees absolute feedback.
- Learner has no extra information about the arms. Contextual bandits.

Availability of Extra Information

Figure 3: Google search results

- Observation of extra information (context) before choosing an action.
- Practical scenario: News recommendation, ad selection.

• At each time step t = 1, 2, ..., T

- At each time step t = 1, 2, ..., T
 - the learner observes feature vector (context) $\mathbf{x_t} \in \mathbb{R}^d$,

- At each time step t = 1, 2, ..., T
 - the learner observes feature vector (context) $\mathbf{x}_t \in \mathbb{R}^d$,
 - the learner chooses an arm i(t) and,

- At each time step t = 1, 2, ..., T
 - the learner observes feature vector (context) $\mathbf{x_t} \in \mathbb{R}^d$,
 - ullet the learner chooses an arm i(t) and,
 - the learner receives a reward $r(t) = r_{t,i(t)}$.

- At each time step t = 1, 2, ..., T
 - the learner observes feature vector (context) $\mathbf{x_t} \in \mathbb{R}^d$,
 - ullet the learner chooses an arm i(t) and,
 - the learner receives a reward $r(t) = r_{t,i(t)}$.
- Linear dependence: $\mathbb{E}[r_{t,a} \mid \mathbf{x_t}] = \mathbf{x_t} \cdot \theta_a$ for some unknown vector $\theta_a \in \mathbb{R}^d$.

Example

Image source: blogpost

Algorithm for Linear Contextual Bandits

Algorithm LinUCB [Li et al., 2010]

- 1: Compute confidence regions $C_{a,t}$ for each arm a.
- 2: Observe feature vector (context) $\mathbf{x_t} \in \mathbb{R}^d$.
- 3: For each arm a, compute

$$UCB_t(a \mid \mathbf{x}_{t,a}) = \sup_{\hat{\theta}_a \in C_{a,t}} \mathbf{x}_t \cdot \hat{\theta}_a$$

4: Select the arm which maximizes $UCB_t(a \mid \mathbf{x}_{t,a})$

Summary

- Non-stationary Stochastic Bandits.
- Adversarial Bandits.
- Dueling Bandits (and a Lower Bound)
- Contextual Bandits.

Next Lecture

- Reinforcement learning in Markov decision processes.
- A near-optimal algorithm : UCRL.

References

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed bandit problem. SIAM J. Comput., 32(1): 48–77, jan 2003. ISSN 0097-5397. doi: 10.1137/S0097539701398375. URL https://doi.org/10.1137/S0097539701398375.

Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for switching bandit problems. In Jyrki Kivinen, Csaba Szepesvári, Esko Ukkonen, and Thomas Zeugmann, editors, *Algorithmic Learning Theory*, pages 174–188, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-24412-4.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to personalized news article recommendation, 2010.

References ii

F. Radlinski and T. Joachims. Active exploration for learning rankings from clickthrough data. In *KDD 2007*, pages 570–579. ACM, 2007. doi: 10.1145/1281192.1281254.