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Clarification: About the base of log terms

e Base of log terms is mostly not important in this course.
e We are concerned with the leading terms i.e., whether the regret
bound is in terms of T or v/ T or log T and not with constants.
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e You can convert the base of a log from e to 2 or 10 (and vice versa)
just with an extra multiplicative constant (see here).

e So the base only affects the constant in the results, and hence it is
mostly not important.


https://www.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:logs/x2ec2f6f830c9fb89:change-of-base/a/logarithm-change-of-base-rule-intro
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A Quick Recap of Lecture 1, 2 and 3

e Lecture 1: Introduction to reinforcement learning and its basic
elements.

e Lecture 2: UCB for stationary stochastic bandits and its regret
bound. Frequentist perspective.

e Lecture 3: Thompson sampling for stationary stochastic bandits and
its regret bound. Bayseian perspective.
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e chooses an arm i(t), and
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Assumptions in our Bandits Model so far

Stationary Stochastic Bandits

e At each timestep t =1,..., T, the agent,

® chooses an arm i(t), and
e receives a numerical reward r(t) ~ Xjq).

Assumptions in our bandit model so far. ..

e Reward distributions are stationary.
e Rewards are generated by a stochastic process.

e |earner can only select one arm at a time and sees absolute
feedback.

e Learner has no extra information about the arms.



Lecture 4: Qutline

Non-stationary Stochastic Bandits.

Adversarial Bandits.

Dueling Bandits (and a Lower Bound)

e Contextual Bandits.



Non-stationary Stochastic
Bandits



Non-stationary Reward Distributions

o Reward-distributions—are-stationary Non-stationary Stochastic
Bandits.



Non-stationary Stochastic Rewards

Number of arms = K.

At time step t, Reward for arm a ~ X,(t) with mean p,(t).
For some t's, p,(t) # pa(t +1).

How could we characterize these changes?



racterization of Non-stationarity

e Bound the number of changes.
e Mean rewards change at unknown time steps called change-points
and remain constant between two change-points.
e Number of change-points < M.



racterization of Non-stationarity

e Bound the number of changes.

e Mean rewards change at unknown time steps called change-points
and remain constant between two change-points.
e Number of change-points < M.

e Bound the variation in mean rewards.
e Mean rewards can change an arbitrary number of times, but total

variation is bounded i.e.,

T-1

max Z |pa(t) — pa(t + 1) < V.

t=1



Algorithm for Non-stationary Stochastic Bandits (with a bound

on the number of changes)

e Algorithm needs to forget the history before the change.
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Algorithm for Non-stationary Stochastic Bandits (with a bound

on the number of changes)

e Algorithm needs to forget the history before the change.
e While computing empirical mean rewards, only consider the last 7
time steps.

e 7 = size of the window.

Algorithm Sliding Window-UCB algorithm [Garivier and Moulines, 2011]

1: fort=1,..., K do

2: Choose each arm once.

3: end for

4: fort=K+1,... do

5: Compute empirical means fi1(t —1),..., fix(t — 1) based on last
T time steps.
Select arm i(t) = argmax, [fia(t — 1) + confidence term].

7: end for
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How Does Sliding Window-UCB Work?

sliding window

t+1

«fmm Change

slide one clerhent forward

i

t+2

slide ong element forward

t+3

shd@a one element forward

t+4

f

e After a change occurs, sliding window forgets the past and considers
history from the current setting.
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Adversarial Bandits

o Rewards-are-generated-by-a-stochasticprocess Adversarial bandits.
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Learner’s goal : Minimize the learner's regret.
Adversary's goal : Maximize the learner’s regret.
1. The learner tells their policy to the adversary.
2. The learner selects an arm i according to their policy.

3. The adversary observes the selected arm and secretly chooses
rewards,

e for arm 1, reward x; from {0,1}, and
e for arm 2, reward x, from {0, 1}.

4. The learner receives reward r = x;.

5. The regret is R = max{xy, x2} — r.

No matter what the learner does, the adversary can always cause linear
regret for the learner.
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Adversarial Rewards with Oblivious Adversary

A bandit game between the learner and the adversary.
Horizon T = 1 and number of arms = 2.

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

e for arm 1, reward x; from {0,1}, and
e for arm 2, reward x» from {0, 1}.

3. The learner selects an arm i according to their policy.
4. The learner receives reward r = x;.

5. The regret is R = max{xy, x2} — r.

What happens if the the learner’s policy is deterministic?
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Oblivious Adversarial Rewards: Deterministic Policy

Adversarial Rewards with Oblivious Adversary

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

® for arm 1, reward x; from {0, 1}, and
e for arm 2, reward x, from {0, 1}.

3. The learner selects an arm i according to their policy.
4. The learner receives reward r = x;.

5. The regret is R = max{xi,x2} — r.

e If the learner implements a deterministic policy e.g., play arm 1,

the adversary can choose x; = 0 and x = 1, since the adversary
knows the learner's policy and,

the learner’s regret is 1.
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Oblivious Adversarial Rewards: Deterministic Policy

Adversarial Rewards with Oblivious Adversary

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

® for arm 1, reward x; from {0, 1}, and
e for arm 2, reward x, from {0, 1}.

3. The learner selects an arm i according to their policy.
4. The learner receives reward r = x;.

5. The regret is R = max{xi,x2} — r.

e If the learner implements a deterministic policy e.g., play arm 1,

the adversary can choose x; = 0 and x = 1, since the adversary
knows the learner's policy and,

the learner’s regret is 1.

e Deterministic policies cause linear regret! @
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Oblivious Adversarial Rewards: Randomized Policy

Adversarial Rewards with Oblivio dversary

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

® for arm 1, reward x; from {0, 1}, and
e for arm 2, reward x, from {0, 1}.

3. The learner selects an arm i according to their policy.
4. The learner receives reward r = x;.

5. The regret is R = max{xi,x2} — r.

e If the learner implements a randomized policy (e.g., play arm 1 with
probability 0.5),

the best the adversary can do is set x; = 1 and x, = 0, and

the learner’s expected regret = max{xy,x} — E[r] = 1/2.
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Oblivious Adversarial Rewards: Randomized Policy

Adversarial Rewards with Oblivio dversary

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

® for arm 1, reward x; from {0, 1}, and
e for arm 2, reward x, from {0, 1}.

3. The learner selects an arm i according to their policy.
4. The learner receives reward r = x;.

5. The regret is R = max{xi,x2} — r.

e If the learner implements a randomized policy (e.g., play arm 1 with
probability 0.5),

the best the adversary can do is set x; = 1 and x, = 0, and

the learner’s expected regret = max{xy,x} — E[r] = 1/2.

e Randomized policies can achieve sub-linear regret.©
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Adversarial Bandits

e Number of arms = K and time horizon T.
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Adversarial Bandits

Number of arms = K and time horizon T.

The adversary/environment chooses a sequence of reward vectors
x(t) = (xa(t),...,xk(t)) fort=1,...,T.
At time steps t =1,..., T,

e the learner selects an arm i(t);
o the learner receives reward r(t):=xj)(t).

Performance measure?
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Performance Measure: Regret |

e Recall that for stationary stochastic bandits, the goal was to

minimize

.
R (T) = Ty - E|D ()|
N t=1

Optimal expected cumulative reward

Expected cumulative reward of 7
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Performance Measure: Regret |

e Recall that for stationary stochastic bandits, the goal was to
minimize
-
R (T) = Ty - E|D ()|
g t=1

Optimal expected cumulative reward

Expected cumulative reward of 7

Benchmark policy: ‘always play the arm with highest mean reward'.

e Competing with the policy that always plays the best arm?

e Does that make any sense for adversarial rewards?
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Performance Measure: Regret Il

e The benchmark policy : ‘always play the best arm (in hindsight)’,

-
the best arm = arg maxea(t).

a t=1
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Performance Measure: Regret Il

e The benchmark policy : ‘always play the best arm (in hindsight)’,

-
the best arm = arg maxea(t).
=1
-
e The cumulative reward of the benchmark policy = max, >_ xa(t).
t=1

e The learner’s goal is to minimize the expected cumulative regret.

19



Algorithm for Adversarial Bandits: EXP3

Algorithm EXP3 [Auer et al., 2003]

1. For each arm a, initialize w,(1) = 1.

2: At time t, for each arm a,

wa(t) 0
P O T K

. Pick i(t) ~ p(t) = (p1, ..., Pk)-
: Receive reward r(t) = xj()(t).
5. fora=1,2,...,K do

. if 2 = i(t)

p:
0 otherwise

wa(t + 1) « wa(t) exp (£Xa(t)).
8: end for

A~ W

6: Xa(t) =

=
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e v = exploration parameter. Zb:1 Wb(l') K
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Algorithm for Adversarial Bandits: EXP3

Algorithm EXP3 [Auer et al., 2003]

e Weight of the selected arm
is updated via an estimator.
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Algorithm for Adversarial Bandits: EXP3

Algorithm EXP3 [Auer et al., 2003]

1. For each arm a, initialize w,(1) = 1.

e Assigns weight to each arm.

e Higher weight = higher 2: At time t, for each arm a,
selection probability. P () ) o
= lorati . & - K K
e ~ = exploration parameter K wi(t) K

e Weight of the selected arm

w

is updated via an estimator. : Pick i(t) ~ p(t) = (p1,- .., px).

4: Receive reward r(t) = x;(y)(t).
e Arms producing more 5. fora=1,2,...,K do
5 h h r(t) . .
revya;ds receive higher . 2.(t) = oo ifa _./(t)
weights. 0 otherwise
7 wa(t+1)  wa(t) exp (g Ra(t))-

8: end for
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Regret Bound for EXP3

Theorem (Auer et al. [2003])

The expected cumulative regret of EXP3 is O (\/ TK Iog(K)).



Key Lemma in the Regret Analysis

Let “history”

Fe=i(1),i(2),...,i(t - 1). Algorithm EXP3 Auer et al. [2003]

1. For each arm a, initialize w,(1) = 1.
2: At time t, for each arm a,

~ wa(t) ol
P O g T K

3: Pick i(t) ~ p(t) = (p1, ..., Pk).
4: Receive reward r(t):=x)(t).

)
5. fora=1,2,...,K do
pr(t) if a=i(t)
0  otherwise
wa(t + 1) « wa(t) - exp £2(t).
8: end for

6: Xa(f) =

22



Key Lemma in the Regret Analysis

Let “history”

Fe=i(1),i(2),...,i(t—1). Algorithm EXP3 Auer et al. [2003]

E[R:(t) | Ft] = xa(t).

o X,(t) estimates the reward
of arm a at time t.

4: Receive reward r(t):=x;)(t).
5. fora=1,2,...,K do
r(t) 0 .
6 a()=4 P Ta=i)
0 otherwise
8: end for




Key Lemma in the Regret Analysis

Let “history”
Fr=1i(1),i(2),...,i(t = 1).

Algorithm EXP3 Auer et al. [2003]

E[R:(t) | Ft] = xa(t).

o X,(t) estimates the reward
of arm a at time t.

Proof.
4: Receive reward r(t):=x;)(t)
E[%(t)] 5 fora=1,2,...,K do
x() 4 (1 0 ) A8 if 2 = (1)
o [pa(t) " Pa(t) (1= ps(t))- } o %(t) = 0 otherwise
= x,(t)

8: end for
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We start again after a break.
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Dueling Bandits




Dueling Bandits

o —Learnercan-onlyselect-one-armata-time-and-seesabselute
feedbaek Dueling bandits.
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Feedback to the Learner?

Figure 1: DuckDuckGo search results Figure 2: Google search results

e So far, we have assumed the feedback is absolute.
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Feedback to the Learner?

Figure 1: DuckDuckGo search results Figure 2: Google search results
e So far, we have assumed the feedback is absolute.
e What if feedback is relative and not absolute?
e Practical scenario: Information retrieval in search engines.

e Relative feedback by interleaved filtering [Radlinski and Joachims,
2007]
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Adversarial Dueling Bandits: Mathematical Setting

e Number of arms = K and time horizon T.
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Performance Measure: Regret
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Performance Measure: Regret

e The benchmark policy : ‘always play the best arm (in hindsight)

-
e The cumulative reward of the benchmark policy = max, > x,(t),
t=1

e The learner's goal is to minimize the expected cumulative regret.

-
R(T)= maxea(t) -
t=1 ‘

t=1
T it (1) + x50(2)
X X
:m;xZXa(t)_I? Z%
t=1 t=1

(where i(t) and j(t) are the arms picked at time t).
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e Lower bound of a problem shows the best performance any
algorithm can achieve for that problem.
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e Lower bound of a problem shows the best performance any
algorithm can achieve for that problem.

e Lower bound tells you the hardness of the problem.

e If upper bound of an algorithm ~ lower bound,
then, the algorithm is (close) to optimal.

e Form of a typical lower bound: For any algorithm A, there exists an
instance of the problem such that regret of A is at least . . ..

e Lower bound for stationary stochastic bandits = VKT [Auer et al.,
2003]
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Reducing Problem A to Problem B

e Problem A is reducible to problem B,
if an algorithm for solving problem B efficiently could also be used as
a subroutine to solve problem A efficiently.
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Problem A is reducible to problem B,
if an algorithm for solving problem B efficiently could also be used as

a subroutine to solve problem A efficiently.

When this is true, solving A cannot be harder than solving B;
i.e., solving B is at least as hard as solving A.

For more information, click here.

Idea: Reduce stationary stochastic bandits to dueling bandits.

Reduction shows that solving dueling bandits is at least as hard as

solving stationary stochastic bandits.
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Reducing Problem A to Problem B

e Problem A is reducible to problem B,
if an algorithm for solving problem B efficiently could also be used as
a subroutine to solve problem A efficiently.

e When this is true, solving A cannot be harder than solving B;
i.e., solving B is at least as hard as solving A.

For more information, click here.
e |dea: Reduce stationary stochastic bandits to dueling bandits.

e Reduction shows that solving dueling bandits is at least as hard as
solving stationary stochastic bandits.

e Lower bound for dueling bandits = Lower bound for stationary
stochastic bandits.

29
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Lower Bound for Dueling Bandits

e A generic dueling bandits algorithm DBA with following procedures:
decide() and update().
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Lower Bound for Dueling Bandits

e A generic dueling bandits algorithm DBA with following procedures:
decide() and update().
e A stationary stochastic bandit environment CBE with get_reward()

procedure.

Algorithm Reduction from stationary stochastic bandits

Repeat
. (i,j) + DBA.decide(t).
. x;(t) + CBE.get_reward(/).
. xj(t + 1) «+ CBE.get_reward()).
: DBA.update(t, (7, ), ¥ (xi — x;)).
t=t+2.
Until t > T

a s W N =

e Cumulative reward of DBA = E {Zt W]
e E [CB cumulative reward of above procedure]
=E[>", xi(t) + x;(t + 1)] = 2 * E [cumulative reward of DBA]

e [E[Regret of DBA] is of the same order as E[Regret of CB]. 20



Algorithm for Adversarial Dueling Bandits: REX3

Algorithm REX3 (PG et al.)

1: For each arm a, initialize weights

w,(1) = 1.

2: At time t, for each arm a,

_ oy Wal(t) ol
Pa < (1 7) Z:I Wb(t) + K

3: Sample

iaJ'Np(t):(ph"wpK)a

<

t
P

get £(t) = ¥(x — ).
4 wi(t+1) < wi(t)-e

ol
K

N

(1)
25;

Wit +1) ¢ wi(t) - e

xp
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Algorithm for Adversarial Dueling Bandits: REX3

Algorithm REX3 (PG et al.)

1: For each arm a, initialize weights

e Assigns weight to each arm. wa(l) = 1.

31
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Algorithm for Adversarial Dueling Bandits: REX3

Algorithm REX3 (PG et al.)

e Higher weight = higher

selection probability. 2: At time t, for each arm a,

e v € (0,0.5) exploration ps (1 =) KWa(t) + X
parameter. Sy w(t) K

31
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Algorithm for Adversarial Dueling Bandits: REX3

Algorithm REX3 (PG et al.)

e Weights of the selected

arms are updated. 5 Sepple

e Arms winning more duels ij~pt)=(p1,---,Pk),
receive higher weights.

<

t
P

get £(t) = ¥(x — ).
4 wi(t+1) < wi(t)-e
wit +1) = wi(t) - e

ol
K

N

(1)
25;

xp
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How Does REX3 Work?

Algorithm REX3

Weights at ¢ = 0 1: For each arm a, initialize weights
(/=0 wy(1) = 1.
2: At time t, for each arm a,
Pa (11— 7)% +
Yporwe(t) K
3: Sample

,,,,,,

e Update weight according to get f(t) = ¢¥(x; — x;).
(relative) feedback. 4 wi(t+1) < wi(t) - oF
—xf)
wi(t +1) < w(t) e %

32



How Does REX3 Work?

f=i, =2
1 wins the duel
Weights at t = 1

e Weight may decrease.

Algorithm REX3

1: For each arm a, initialize weights

w,(1) = 1.
2: At time t, for each arm a,

oy wal(t)
P SR i T K
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How Does REX3 Work?

f=1l, =8
1 wins the duel
Weights at t = 2

e Weights increase at arms
which win regularly.

Algorithm REX3

1: For each arm a, initialize weights

w,(1) = 1.

. At time t, for each arm a,

oy wal(t)
P SR i T K

32



Regret Upper Bound for REX3

Theorem (PG et al., 2015)

The expected cumulative regret of REX3 is O (\/ TK Iog(K)).
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Regret Upper Bound for REX3

Theorem (PG et al., 2015)

The expected cumulative regret of REX3 is O (\/ TK Iog(K)).

e The upper bound is only y/log(K) away than the lower bound VKT
so REX3 is near-optimal.
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e binary rewards i.e.,
x,(t) = either 0 or 1,

for all arms a and all time steps t.
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e binary rewards i.e.,
x,(t) = either 0 or 1,

for all arms a and all time steps t.

e Feedback function 1) is identity i.e., when arms / and j are selected,
feedback = f ==9(x; — xj) = x; — x;

e When when arms / and j are selected,

-1 ifx< Xj
feedback = f =<0 if x; = x;
+1 if Xi > Xj

34



Estimator for an arm

Algorithm REX3

1: For each arm a, initialize weights

w,(1) = 1.
2: At time t, for each arm a,

wa(t)

Ki +
> b1 Wo(t)

~
Pae(]-*’y) R

3: Sample

IaJNp(t) :(plv"'apK)a

get £(t) = v(x; — x).
4 wi(t+1) + w(t)- e

t
P

x

N

i
f(t

w(t+1) < wi(e)- e ¥

=k
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Estimator for an arm

Algorithm REX3

o Let

&(t) =I[a= i]w

(5 = xi)

+la = 120
J

where / and j are the arms
picked at time t. 3: Sample

IaJNp(t) :(plv"'apK)a

get F(t) = v(x — x,).
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Estimator for an arm

Algorithm REX3

o Let

() =1a = 2=
2p;
(X —xi)
+Ila =j]———
l2=1] 2p;
where / and j are the arms

picked at time t. 3: Sample
e Step 4 is equivalent to:

,J ~p(t) =
for each arm a, 1)~ p(E) = (P, pi)s

get £(t) = v(x; — ).
4 wi(t+1) + w(t) - e

w(t+1) < wi(e)-e ¥

t
P

x

wa(t + 1) = wa(t) - ex &)

N

i
f(t

=2

35



Main Lemma

e Step 4 is equivalent to:
for each arm a,

wo(t + 1) = wa(t) - ex ()

Algorithm REX3

3 W,‘(t-l- 1) < W,'(t) -e

1: For each arm a, initialize weights

w,(1) = 1.

. At time t, for each arm a,

w;(t)

Ki +
> b1 Ws(1)

N
pae(]-*f}/) K

- Sample

’,JNP(t):(P177PK)~

get f(t) = ¥(x; — x;).

Y
=

&
=

xR
o
3

wi(t+ 1)« wi(t) e
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Main Lemma

e Step 4 is equivalent to:
for each arm a,

wo(t + 1) = wa(t) - ex ()

Let Fp:=i(1),j(1),. .., i(t),j(t).

Algorithm REX3

3 W,‘(t-l- 1) < W,'(t) -e

1: For each arm a, initialize weights

w,(1) = 1.

. At time t, for each arm a,

w,(t)
S D)

N
pae(]-*f}/) K

- Sample
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Y
)

-
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o
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Main Lemma

Algorithm REX3

1: For each arm a, initialize weights

e Step 4 is equivalent to:
for each arm a,

.. (1) = 1.
Wt + 1) = wy(t) - ek wal(l)
Let o = i(1),j(1), ... i(t).j(2). 2: At time t, for each arm a,
Lemma (Lemma 1 in PG et al.) pa+— (1— 7)% + X
n — Yoo we(t) K

E[é.(t) | Fe] =

IEi~p(t) [xa(t) — xi(t)]. 3: Sample

e (,(t) estimates the relative ij~pt)=(p1,-..,pPk),

utility/advantage of picking
t f(t) = F =24

arm a instead of picking an arm get £(t) = vx — )
according to p(t). 4 wi(t+1) < wi(t) - e
wi(t+1)  wi(t) - e

\

Y
»

-

xR
»
3
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Proof of Main Lemma

Lemma (Lemma 1 in in PG et al.)

E[é.(1) | Fi] = Einpey [xa(t) — xi(1)].

Proof.
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Proof.  Recall number of arms = K, p(t) = arm selection probabilities,
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K K

A _ = xn) 10— xm)
(’.7j)IEp(t)[C3(t)] - n; — PmPn |:H[3 = m]2/?7m + ]I[a = n]2n:|
K K ( « )
_ . I[a = m n
2 ;%p l2 = m] 55—
303 (X0 = m)
- ]I — n Xm
+ 2::1 ; pmp# I[a = n] 2
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mzﬂg,%p 2 = ml*=5—
3 (0 = )
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I
Mx

n=1


https://proceedings.mlr.press/v37/gajane15.html

Proof of Main Lemma
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Proof.  Recall number of arms = K, p(t) = arm selection probabilities,
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3 (0 = )
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|
M x

— X
Ph——F— +§P/n7m)
n=1

= E Do(t) —xi(t)]-
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Contextual Bandits




Contextual Bandits

e learner-has no extra-information-aboutthe-arms. Contextual
bandits.

38



Availability of Extra Information

Figure 3: Google search results
e Observation of extra information (context) before choosing an

action.

e Practical scenario: News recommendation, ad selection.
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Contextual Bandits: Mathematical Setting

e At each timestept=1,2,..., T
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Contextual Bandits: Mathematical Setti

e At each timestept=1,2,..., T
o the learner observes feature vector (context) x, € R,
e the learner chooses an arm i(t) and,
o the learner receives a reward r(t) = ry ).

o Linear dependence: E[r;, | x{] = x; - 6, for some unknown vector
0, € RY.
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Example

Article Recommendation in
Contextual Linear Bandit Setting

Linear Payoff = x" 8
Users u, with age YOUNG

and u, with age OLD : [0.1,06]
y Wizarding World of Harry Potter

[0,5,0.1] ride may conjure a new path for theme park
rides

Retirement planning wishes
vs. reality

(06,0.1] Elon Musk: 198,000 Tesla Model 3 Orders

y Received in 24 Hours
%
| é [09,02) Not tired yet: Warriors top Spurs for
72nd win, set up date with history

2

Image source: blogpost
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Algorithm for Linear Contextual Bandits

Algorithm LinUCB [Li et al., 2010]

1: Compute confidence regions C, ; for each arm a.
2: Observe feature vector (context) x, € R¢.
3: For each arm a, compute

UCB:(a|xt2) = sup x;- 0,
éaeca,t

4: Select the arm which maximizes UCB;(a | x¢.,)

42



Non-stationary Stochastic Bandits.

Adversarial Bandits.

Dueling Bandits (and a Lower Bound)

e Contextual Bandits.
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Next Lecture

e Reinforcement learning in Markov decision processes.

e A near-optimal algorithm: UCRL.
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