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Introduction



Clarification : About the base of log terms

• Base of log terms is mostly not important in this course.

• We are concerned with the leading terms i.e., whether the regret

bound is in terms of T or
√
T or logT and not with constants.

• For this course, a regret bound of logT is not better than 10logT

but a regret bound of 10logT is better than
√
T .

• You can convert the base of a log from e to 2 or 10 (and vice versa)

just with an extra multiplicative constant (see here).

• So the base only affects the constant in the results, and hence it is

mostly not important.
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A Quick Recap of Lecture 1, 2 and 3

• Lecture 1 : Introduction to reinforcement learning and its basic

elements.

• Lecture 2 : UCB for stationary stochastic bandits and its regret

bound. Frequentist perspective.

• Lecture 3 : Thompson sampling for stationary stochastic bandits and

its regret bound. Bayseian perspective.
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Stationary Stochastic Bandits

• Number of arms = K .

• Reward for arm a ∼ Xa with mean µa.

• X1,X2, . . .XK are unknown stationary distributions.

• At each time step t = 1, . . . ,T , the agent,

• chooses an arm i(t), and

• receives a numerical reward r(t) ∼ Xi(t).
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Assumptions in our Bandits Model so far

Stationary Stochastic Bandits

• Number of arms = K

• Reward for arm a ∼ Xa with mean µa.

• X1,X2, . . .XK are unknown stationary distributions.

• At each time step t = 1, . . . ,T , the agent,

• chooses an arm i(t), and

• receives a numerical reward r(t) ∼ Xi(t).

Assumptions in our bandit model so far. . .

• Reward distributions are stationary.

• Rewards are generated by a stochastic process.

• Learner can only select one arm at a time and sees absolute

feedback.

• Learner has no extra information about the arms.
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Lecture 4: Outline

• Non-stationary Stochastic Bandits.

• Adversarial Bandits.

• Dueling Bandits (and a Lower Bound)

• Contextual Bandits.
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Non-stationary Stochastic

Bandits



Non-stationary Reward Distributions

• Reward distributions are stationary Non-stationary Stochastic

Bandits.

• Rewards are assumed to be generated by a stochastic process.

• Learner can only select one arm at a time and sees absolute

feedback.

• Learner has no extra information about the arms.
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Non-stationary Stochastic Rewards

• Number of arms = K .

• At time step t, Reward for arm a ∼ Xa(t) with mean µa(t).

• For some t’s, µa(t) ̸= µa(t + 1).

• How could we characterize these changes?
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Characterization of Non-stationarity

• Bound the number of changes.

• Mean rewards change at unknown time steps called change-points

and remain constant between two change-points.

• Number of change-points ≤ M.

• Bound the variation in mean rewards.

• Mean rewards can change an arbitrary number of times, but total

variation is bounded i.e.,

max
a

T−1∑
t=1

|µa(t)− µa(t + 1)| ≤ V .

9



Characterization of Non-stationarity

• Bound the number of changes.

• Mean rewards change at unknown time steps called change-points

and remain constant between two change-points.

• Number of change-points ≤ M.

• Bound the variation in mean rewards.

• Mean rewards can change an arbitrary number of times, but total

variation is bounded i.e.,

max
a

T−1∑
t=1

|µa(t)− µa(t + 1)| ≤ V .

9



Algorithm for Non-stationary Stochastic Bandits (with a bound

on the number of changes)

• Algorithm needs to forget the history before the change.

• While computing empirical mean rewards, only consider the last τ

time steps.

• τ = size of the window.

Algorithm Sliding Window-UCB algorithm [Garivier and Moulines, 2011]

1: for t = 1, . . . ,K do
2: Choose each arm once.
3: end for
4: for t = K + 1, . . . do
5: Compute empirical means µ̂1(t − 1), . . . , µ̂K (t − 1) based on last

τ time steps.
6: Select arm i(t) = argmaxa [µ̂a(t − 1) + confidence term].
7: end for
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How Does Sliding Window-UCB Work?

• After a change occurs, sliding window forgets the past and considers

history from the current setting.
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Adversarial Bandits



Adversarial Bandits

• Reward distributions are stationary.

• Rewards are generated by a stochastic process Adversarial bandits.

• Learner can only select one arm at a time and sees absolute

feedback.

• Learner has no extra information about the arms.
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Adversarial Rewards : Simple Example

A bandit game between the learner and an adversary .

Horizon T = 1 and number of arms = 2.

Learner’s goal : Minimize the learner’s regret.

Adversary’s goal : Maximize the learner’s regret.

1. The learner tells their policy to the adversary.

2. The learner selects an arm i according to their policy.

3. The adversary observes the selected arm and secretly chooses

rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

No matter what the learner does, the adversary can always cause linear

regret for the learner.
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Adversarial Rewards with Oblivious Adversary

A bandit game between the learner and the adversary.

Horizon T = 1 and number of arms = 2.

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

3. The learner selects an arm i according to their policy.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

What happens if the the learner’s policy is deterministic?

14
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Oblivious Adversarial Rewards : Deterministic Policy

Adversarial Rewards with Oblivious Adversary

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

3. The learner selects an arm i according to their policy.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

• If the learner implements a deterministic policy e.g., play arm 1,

the adversary can choose x1 = 0 and x2 = 1, since the adversary

knows the learner’s policy and,

the learner’s regret is 1.

• Deterministic policies cause linear regret!

15
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Oblivious Adversarial Rewards : Randomized Policy

Adversarial Rewards with Oblivious Adversary

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

3. The learner selects an arm i according to their policy.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

• If the learner implements a randomized policy (e.g., play arm 1 with

probability 0.5),

the best the adversary can do is set x1 = 1 and x2 = 0, and

the learner’s expected regret = max{x1, x2} − E[r ] = 1/2.

• Randomized policies can achieve sub-linear regret.
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Adversarial Bandits

• Number of arms = K and time horizon T .

• The adversary/environment chooses a sequence of reward vectors

x(t) = (x1(t), . . . , xK (t)) for t = 1, . . . ,T .

• At time steps t = 1, . . . ,T ,

• the learner selects an arm i(t);

• the learner receives reward r(t) := xi(t)(t).

• Performance measure?

17
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Performance Measure : Regret I

• Recall that for stationary stochastic bandits, the goal was to

minimize

Rπ(T ) := Tµ∗︸︷︷︸
Optimal expected cumulative reward

− E

[
T∑
t=1

r(t) | π

]
︸ ︷︷ ︸

Expected cumulative reward of π

.

• Benchmark policy : ‘always play the arm with highest mean reward’.

• Does that make any sense for adversarial rewards?

• Competing with the policy that always plays the best arm?

18
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Performance Measure : Regret II

• The benchmark policy : ‘always play the best arm (in hindsight)’,

the best arm = argmax
a

T∑
t=1

xa(t).

• The cumulative reward of the benchmark policy = maxa
T∑
t=1

xa(t).

• The learner’s goal is to minimize the expected cumulative regret.

Rπ(T ) :=max
a

T∑
t=1

xa(t)− E
π

[
T∑
t=1

r(t) | π

]
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Algorithm for Adversarial Bandits : EXP3

• Assigns weight to each arm.

• Higher weight =⇒ higher

selection probability.

• γ = exploration parameter.

• Weight of the selected arm

is updated via an estimator.

• Arms producing more

rewards receive higher

weights.

Algorithm EXP3 [Auer et al., 2003]

1: For each arm a, initialize wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Pick i(t) ∼ p(t) = (p1, . . . , pK ).
4: Receive reward r(t) := xi(t)(t).
5: for a = 1, 2, . . . ,K do

6: x̂a(t) =

{
r(t)
pa(t)

if a = i(t)

0 otherwise

7: wa(t + 1)← wa(t) exp (
γ
K x̂a(t)).

8: end for
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Regret Bound for EXP3

Theorem (Auer et al. [2003])

The expected cumulative regret of EXP3 is O
(√

TK log(K )
)
.
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Key Lemma in the Regret Analysis

Let “history”

Ft := i(1), i(2), . . . , i(t − 1).

Lemma

E[x̂a(t) | Ft ] = xa(t).

• x̂a(t) estimates the reward

of arm a at time t.

Proof.

E[x̂a(t)]

=
[
pa(t) · xa(t)pa(t)

+ (1− pa(t)) · 0
]

= xa(t)

Algorithm EXP3 Auer et al. [2003]

1: For each arm a, initialize wa(1) = 1.
2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Pick i(t) ∼ p(t) = (p1, . . . , pK ).
4: Receive reward r(t) := xi(t)(t).
5: for a = 1, 2, . . . ,K do

6: x̂a(t) =

{
r(t)
pa(t)

if a = i(t)

0 otherwise

7: wa(t + 1)← wa(t) · exp γ
K x̂a(t).

8: end for
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Break

We start again after a break.

23



Dueling Bandits



Dueling Bandits

• Reward distributions are stationary.

• Rewards are assumed to be generated by a stochastic process.

• Learner can only select one arm at a time and sees absolute

feedback Dueling bandits.

• Learner has no extra information about the arms.

24



Feedback to the Learner?

Figure 1: DuckDuckGo search results Figure 2: Google search results

• So far, we have assumed the feedback is absolute.

• What if feedback is relative and not absolute?

• Practical scenario : Information retrieval in search engines.

• Relative feedback by interleaved filtering [Radlinski and Joachims,

2007]
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Adversarial Dueling Bandits : Mathematical Setting

• Number of arms = K and time horizon T .

• The adversary/environment chooses a sequence of reward vectors

x(t) = (x1(t), . . . , xK (t)) for t = 1, . . . ,T .

• At time steps t = 1, . . . ,T ,

• the learner selects two arms i(t) and j(t);

• the learner receives (hidden) reward r(t) :=
xi(t)(t)+xj(t)(t)

2
; and

• the learner sees relative feedback f (t) :=ψ(xi(t) − xj(t)) where ψ is

some feedback function.

• Performance measure?
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Performance Measure : Regret

• The benchmark policy : ‘always play the best arm (in hindsight)’.

• The cumulative reward of the benchmark policy = maxa
T∑
t=1

xa(t),

• The learner’s goal is to minimize the expected cumulative regret.

Rπ(T ) :=max
a

T∑
t=1

xa(t)− E
π

[
T∑
t=1

r(t) | π

]

= max
a

T∑
t=1

xa(t)− E
π

 T∑
t=1

xi(t)(t) + xj(t)(t)

2


(where i(t) and j(t) are the arms picked at time t).
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Lower Bound

• Lower bound of a problem shows the best performance any

algorithm can achieve for that problem.

• Lower bound tells you the hardness of the problem.

• If upper bound of an algorithm ≃ lower bound,

then, the algorithm is (close) to optimal.

• Form of a typical lower bound : For any algorithm A, there exists an

instance of the problem such that regret of A is at least . . . .

• Lower bound for stationary stochastic bandits =
√
KT [Auer et al.,

2003]
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Reducing Problem A to Problem B

• Problem A is reducible to problem B,

if an algorithm for solving problem B efficiently could also be used as

a subroutine to solve problem A efficiently.

• When this is true, solving A cannot be harder than solving B;

i.e., solving B is at least as hard as solving A.

For more information, click here.

• Idea : Reduce stationary stochastic bandits to dueling bandits.

• Reduction shows that solving dueling bandits is at least as hard as

solving stationary stochastic bandits.

• Lower bound for dueling bandits = Lower bound for stationary

stochastic bandits.

29

https://en.wikipedia.org/wiki/Reduction_(complexity)


Reducing Problem A to Problem B

• Problem A is reducible to problem B,

if an algorithm for solving problem B efficiently could also be used as

a subroutine to solve problem A efficiently.

• When this is true, solving A cannot be harder than solving B;

i.e., solving B is at least as hard as solving A.

For more information, click here.

• Idea : Reduce stationary stochastic bandits to dueling bandits.

• Reduction shows that solving dueling bandits is at least as hard as

solving stationary stochastic bandits.

• Lower bound for dueling bandits = Lower bound for stationary

stochastic bandits.

29

https://en.wikipedia.org/wiki/Reduction_(complexity)


Reducing Problem A to Problem B

• Problem A is reducible to problem B,

if an algorithm for solving problem B efficiently could also be used as

a subroutine to solve problem A efficiently.

• When this is true, solving A cannot be harder than solving B;

i.e., solving B is at least as hard as solving A.

For more information, click here.

• Idea : Reduce stationary stochastic bandits to dueling bandits.

• Reduction shows that solving dueling bandits is at least as hard as

solving stationary stochastic bandits.

• Lower bound for dueling bandits = Lower bound for stationary

stochastic bandits.

29

https://en.wikipedia.org/wiki/Reduction_(complexity)


Reducing Problem A to Problem B

• Problem A is reducible to problem B,

if an algorithm for solving problem B efficiently could also be used as

a subroutine to solve problem A efficiently.

• When this is true, solving A cannot be harder than solving B;

i.e., solving B is at least as hard as solving A.

For more information, click here.

• Idea : Reduce stationary stochastic bandits to dueling bandits.

• Reduction shows that solving dueling bandits is at least as hard as

solving stationary stochastic bandits.

• Lower bound for dueling bandits = Lower bound for stationary

stochastic bandits.

29

https://en.wikipedia.org/wiki/Reduction_(complexity)


Reducing Problem A to Problem B

• Problem A is reducible to problem B,

if an algorithm for solving problem B efficiently could also be used as

a subroutine to solve problem A efficiently.

• When this is true, solving A cannot be harder than solving B;

i.e., solving B is at least as hard as solving A.

For more information, click here.

• Idea : Reduce stationary stochastic bandits to dueling bandits.

• Reduction shows that solving dueling bandits is at least as hard as

solving stationary stochastic bandits.

• Lower bound for dueling bandits = Lower bound for stationary

stochastic bandits.

29

https://en.wikipedia.org/wiki/Reduction_(complexity)


Lower Bound for Dueling Bandits

• A generic dueling bandits algorithm DBA with following procedures:

decide() and update().

• A stationary stochastic bandit environment CBE with get reward()

procedure.

Algorithm Reduction from stationary stochastic bandits

Repeat
1: (i , j)← DBA.decide(t).
2: xi (t)← CBE.get reward(i).
3: xj(t + 1)← CBE.get reward(j).
4: DBA.update(t, (i , j), ψ(xi − xj)).
5: t = t + 2.

Until t ≥ T

• Cumulative reward of DBA = E
[∑

t
xi (t)+xj (t+1)

2

]
• E [CB cumulative reward of above procedure]

= E[
∑

t xi (t) + xj(t + 1)] = 2 ∗ E [cumulative reward of DBA]

• E[Regret of DBA] is of the same order as E[Regret of CB].
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Until t ≥ T

• Cumulative reward of DBA = E
[∑

t
xi (t)+xj (t+1)

2

]
• E [CB cumulative reward of above procedure]

= E[
∑

t xi (t) + xj(t + 1)] = 2 ∗ E [cumulative reward of DBA]

• E[Regret of DBA] is of the same order as E[Regret of CB].
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Algorithm for Adversarial Dueling Bandits : REX3

• Assigns weight to each arm.

• Higher weight =⇒ higher

selection probability.

• γ ∈ (0, 0.5) exploration

parameter.

• Weights of the selected

arms are updated.

• Arms winning more duels

receive higher weights.

Algorithm REX3 (PG et al.)

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK ) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj
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How Does REX3 Work?

Weights at t = 0

(γ = 0.4)

• Update weight according to

(relative) feedback.

Algorithm REX3

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK ) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj

32



How Does REX3 Work?

i = 1, j = 2

1 wins the duel

Weights at t = 1

• Weight may decrease.

Algorithm REX3

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK ) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
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f (t)
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− γ

K
f (t)
2pj
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How Does REX3 Work?

i = 1, j = 3

1 wins the duel

Weights at t = 2

• Weights increase at arms

which win regularly.

Algorithm REX3

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK ) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj

32



Regret Upper Bound for REX3

Theorem (PG et al., 2015)

The expected cumulative regret of REX3 is O
(√

TK log(K )
)
.

• The upper bound is only
√
log(K ) away than the lower bound

√
KT

so REX3 is near-optimal.

33
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Analysis

• binary rewards i.e.,

xa(t) = either 0 or 1,

for all arms a and all time steps t.

• Feedback function ψ is identity i.e., when arms i and j are selected,

feedback = f :=ψ(xi − xj) = xi − xj

• When when arms i and j are selected,

feedback = f =


−1 if xi < xj

0 if xi = xj

+1 if xi > xj

34
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Estimator for an arm

• Let

ĉa(t) := I[a = i ]
(xi − xj)

2pi

+ I[a = j ]
(xj − xi )

2pj

where i and j are the arms

picked at time t.

• Step 4 is equivalent to :

for each arm a,

wa(t + 1) = wa(t) · e
γ
K ĉa(t)

Algorithm REX3

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK ) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj
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ĉa(t) := I[a = i ]
(xi − xj)

2pi

+ I[a = j ]
(xj − xi )

2pj

where i and j are the arms

picked at time t.

• Step 4 is equivalent to :

for each arm a,

wa(t + 1) = wa(t) · e
γ
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Main Lemma

• Step 4 is equivalent to :

for each arm a,

wa(t + 1) = wa(t) · e
γ
K ĉa(t)

Let Ft := i(1), j(1), . . . , i(t), j(t).

Lemma (Lemma 1 in PG et al.)

E[ĉa(t) | Ft ] =

Ei∼p(t)[xa(t)− xi (t)].

• ĉa(t) estimates the relative

utility/advantage of picking

arm a instead of picking an arm

according to p(t).

Algorithm REX3

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK ) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj
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Proof of Main Lemma

Lemma (Lemma 1 in in PG et al.)

E[ĉa(t) | Ft ] = Ei∼p(t)[xa(t)− xi (t)].

Proof.

Recall number of arms = K , p(t) = arm selection probabilities,

E[x ] :=
∑

i i · P(x = i) and ĉa(t) := I[a = i ]
(xi−xj )
2pi

+ I[a = j ]
(xj−xi )
2pj

.

E
(i,j)∼p(t)

[ĉa(t)] =
K∑

m=1

K∑
n=1

pmpn

[
I[a = m]

(xm − xn)

2pm
+ I[a = n]

(xn − xm)

2pn

]

=
K∑

m=1

K∑
n=1

��pm pn I[a = m]
(xm − xn)

2��pm

+
K∑

m=1

K∑
n=1

pm��pn I[a = n]
(xn − xm)

2��pn

=
K∑

n=1

pn
(xa − xn)

2
+

K∑
m=1

pm
(xa − xm)

2

= E
i∼p(t)

[xa(t)− xi (t)].
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(xi−xj )
2pi

+ I[a = j ]
(xj−xi )
2pj

.

E
(i,j)∼p(t)

[ĉa(t)] =
K∑

m=1

K∑
n=1

pmpn

[
I[a = m]

(xm − xn)

2pm
+ I[a = n]

(xn − xm)

2pn

]

=
K∑

m=1

K∑
n=1

��pm pn I[a = m]
(xm − xn)

2��pm

+
K∑

m=1

K∑
n=1

pm��pn I[a = n]
(xn − xm)

2��pn

=
K∑

n=1

pn
(xa − xn)

2
+

K∑
m=1

pm
(xa − xm)

2

= E
i∼p(t)

[xa(t)− xi (t)].
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Contextual Bandits

• Reward distributions are stationary.

• Rewards are assumed to be generated by a stochastic process.

• Learner can only select one arm at a time and sees absolute

feedback.

• Learner has no extra information about the arms. Contextual

bandits.
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Availability of Extra Information

Figure 3: Google search results

• Observation of extra information (context) before choosing an

action.

• Practical scenario : News recommendation, ad selection.

39



Contextual Bandits : Mathematical Setting

• At each time step t = 1, 2, . . . ,T

• the learner observes feature vector (context) xt ∈ Rd ,

• the learner chooses an arm i(t) and,

• the learner receives a reward r(t) = rt,i(t).

• Linear dependence : E[rt,a | xt] = xt · θa for some unknown vector

θa ∈ Rd .
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Example

Image source: blogpost
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Algorithm for Linear Contextual Bandits

Algorithm LinUCB [Li et al., 2010]

1: Compute confidence regions Ca,t for each arm a.
2: Observe feature vector (context) xt ∈ Rd .
3: For each arm a, compute

UCBt(a | xt,a) = sup
θ̂a∈Ca,t

xt · θ̂a

4: Select the arm which maximizes UCBt(a | xt,a)
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Summary

• Non-stationary Stochastic Bandits.

• Adversarial Bandits.

• Dueling Bandits (and a Lower Bound)

• Contextual Bandits.
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Next Lecture

• Reinforcement learning in Markov decision processes.

• A near-optimal algorithm : UCRL.
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