
Lecture 4 - Variants of Bandit Problems

Pratik Gajane

September 19, 2022

Eindhoven University of Technology

1

Introduction

Clarification : About the base of log terms

• Base of log terms is mostly not important in this course.

• We are concerned with the leading terms i.e., whether the regret

bound is in terms of T or
√
T or logT and not with constants.

• For this course, a regret bound of logT is not better than 10logT

but a regret bound of 10logT is better than
√
T .

• You can convert the base of a log from e to 2 or 10 (and vice versa)

just with an extra multiplicative constant (see here).

• So the base only affects the constant in the results, and hence it is

mostly not important.

2

https://www.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:logs/x2ec2f6f830c9fb89:change-of-base/a/logarithm-change-of-base-rule-intro

Clarification : About the base of log terms

• Base of log terms is mostly not important in this course.

• We are concerned with the leading terms i.e., whether the regret

bound is in terms of T or
√
T or logT and not with constants.

• For this course, a regret bound of logT is not better than 10logT

but a regret bound of 10logT is better than
√
T .

• You can convert the base of a log from e to 2 or 10 (and vice versa)

just with an extra multiplicative constant (see here).

• So the base only affects the constant in the results, and hence it is

mostly not important.

2

https://www.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:logs/x2ec2f6f830c9fb89:change-of-base/a/logarithm-change-of-base-rule-intro

Clarification : About the base of log terms

• Base of log terms is mostly not important in this course.

• We are concerned with the leading terms i.e., whether the regret

bound is in terms of T or
√
T or logT and not with constants.

• For this course, a regret bound of logT is not better than 10logT

but a regret bound of 10logT is better than
√
T .

• You can convert the base of a log from e to 2 or 10 (and vice versa)

just with an extra multiplicative constant (see here).

• So the base only affects the constant in the results, and hence it is

mostly not important.
2

https://www.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:logs/x2ec2f6f830c9fb89:change-of-base/a/logarithm-change-of-base-rule-intro

A Quick Recap of Lecture 1, 2 and 3

• Lecture 1 : Introduction to reinforcement learning and its basic

elements.

• Lecture 2 : UCB for stationary stochastic bandits and its regret

bound. Frequentist perspective.

• Lecture 3 : Thompson sampling for stationary stochastic bandits and

its regret bound. Bayseian perspective.

3

A Quick Recap of Lecture 1, 2 and 3

• Lecture 1 : Introduction to reinforcement learning and its basic

elements.

• Lecture 2 : UCB for stationary stochastic bandits and its regret

bound. Frequentist perspective.

• Lecture 3 : Thompson sampling for stationary stochastic bandits and

its regret bound. Bayseian perspective.

3

A Quick Recap of Lecture 1, 2 and 3

• Lecture 1 : Introduction to reinforcement learning and its basic

elements.

• Lecture 2 : UCB for stationary stochastic bandits and its regret

bound. Frequentist perspective.

• Lecture 3 : Thompson sampling for stationary stochastic bandits and

its regret bound. Bayseian perspective.

3

Stationary Stochastic Bandits

• Number of arms = K .

• Reward for arm a ∼ Xa with mean µa.

• X1,X2, . . .XK are unknown stationary distributions.

• At each time step t = 1, . . . ,T , the agent,

• chooses an arm i(t), and

• receives a numerical reward r(t) ∼ Xi(t).

4

Assumptions in our Bandits Model so far

Stationary Stochastic Bandits

• Number of arms = K

• Reward for arm a ∼ Xa with mean µa.

• X1,X2, . . .XK are unknown stationary distributions.

• At each time step t = 1, . . . ,T , the agent,

• chooses an arm i(t), and

• receives a numerical reward r(t) ∼ Xi(t).

Assumptions in our bandit model so far. . .

• Reward distributions are stationary.

• Rewards are generated by a stochastic process.

• Learner can only select one arm at a time and sees absolute

feedback.

• Learner has no extra information about the arms.

5

Assumptions in our Bandits Model so far

Stationary Stochastic Bandits

• Number of arms = K

• Reward for arm a ∼ Xa with mean µa.

• X1,X2, . . .XK are unknown stationary distributions.

• At each time step t = 1, . . . ,T , the agent,

• chooses an arm i(t), and

• receives a numerical reward r(t) ∼ Xi(t).

Assumptions in our bandit model so far. . .

• Reward distributions are stationary.

• Rewards are generated by a stochastic process.

• Learner can only select one arm at a time and sees absolute

feedback.

• Learner has no extra information about the arms.

5

Assumptions in our Bandits Model so far

Stationary Stochastic Bandits

• Number of arms = K

• Reward for arm a ∼ Xa with mean µa.

• X1,X2, . . .XK are unknown stationary distributions.

• At each time step t = 1, . . . ,T , the agent,

• chooses an arm i(t), and

• receives a numerical reward r(t) ∼ Xi(t).

Assumptions in our bandit model so far. . .

• Reward distributions are stationary.

• Rewards are generated by a stochastic process.

• Learner can only select one arm at a time and sees absolute

feedback.

• Learner has no extra information about the arms.

5

Assumptions in our Bandits Model so far

Stationary Stochastic Bandits

• Number of arms = K

• Reward for arm a ∼ Xa with mean µa.

• X1,X2, . . .XK are unknown stationary distributions.

• At each time step t = 1, . . . ,T , the agent,

• chooses an arm i(t), and

• receives a numerical reward r(t) ∼ Xi(t).

Assumptions in our bandit model so far. . .

• Reward distributions are stationary.

• Rewards are generated by a stochastic process.

• Learner can only select one arm at a time and sees absolute

feedback.

• Learner has no extra information about the arms.

5

Assumptions in our Bandits Model so far

Stationary Stochastic Bandits

• Number of arms = K

• Reward for arm a ∼ Xa with mean µa.

• X1,X2, . . .XK are unknown stationary distributions.

• At each time step t = 1, . . . ,T , the agent,

• chooses an arm i(t), and

• receives a numerical reward r(t) ∼ Xi(t).

Assumptions in our bandit model so far. . .

• Reward distributions are stationary.

• Rewards are generated by a stochastic process.

• Learner can only select one arm at a time and sees absolute

feedback.

• Learner has no extra information about the arms.

5

Lecture 4: Outline

• Non-stationary Stochastic Bandits.

• Adversarial Bandits.

• Dueling Bandits (and a Lower Bound)

• Contextual Bandits.

6

Non-stationary Stochastic

Bandits

Non-stationary Reward Distributions

• Reward distributions are stationary Non-stationary Stochastic

Bandits.

• Rewards are assumed to be generated by a stochastic process.

• Learner can only select one arm at a time and sees absolute

feedback.

• Learner has no extra information about the arms.

7

Non-stationary Stochastic Rewards

• Number of arms = K .

• At time step t, Reward for arm a ∼ Xa(t) with mean µa(t).

• For some t’s, µa(t) ̸= µa(t + 1).

• How could we characterize these changes?

8

Characterization of Non-stationarity

• Bound the number of changes.

• Mean rewards change at unknown time steps called change-points

and remain constant between two change-points.

• Number of change-points ≤ M.

• Bound the variation in mean rewards.

• Mean rewards can change an arbitrary number of times, but total

variation is bounded i.e.,

max
a

T−1∑
t=1

|µa(t)− µa(t + 1)| ≤ V .

9

Characterization of Non-stationarity

• Bound the number of changes.

• Mean rewards change at unknown time steps called change-points

and remain constant between two change-points.

• Number of change-points ≤ M.

• Bound the variation in mean rewards.

• Mean rewards can change an arbitrary number of times, but total

variation is bounded i.e.,

max
a

T−1∑
t=1

|µa(t)− µa(t + 1)| ≤ V .

9

Algorithm for Non-stationary Stochastic Bandits (with a bound

on the number of changes)

• Algorithm needs to forget the history before the change.

• While computing empirical mean rewards, only consider the last τ

time steps.

• τ = size of the window.

Algorithm Sliding Window-UCB algorithm [Garivier and Moulines, 2011]

1: for t = 1, . . . ,K do
2: Choose each arm once.
3: end for
4: for t = K + 1, . . . do
5: Compute empirical means µ̂1(t − 1), . . . , µ̂K (t − 1) based on last

τ time steps.
6: Select arm i(t) = argmaxa [µ̂a(t − 1) + confidence term].
7: end for

10

Algorithm for Non-stationary Stochastic Bandits (with a bound

on the number of changes)

• Algorithm needs to forget the history before the change.

• While computing empirical mean rewards, only consider the last τ

time steps.

• τ = size of the window.

Algorithm Sliding Window-UCB algorithm [Garivier and Moulines, 2011]

1: for t = 1, . . . ,K do
2: Choose each arm once.
3: end for
4: for t = K + 1, . . . do
5: Compute empirical means µ̂1(t − 1), . . . , µ̂K (t − 1) based on last

τ time steps.
6: Select arm i(t) = argmaxa [µ̂a(t − 1) + confidence term].
7: end for

10

Algorithm for Non-stationary Stochastic Bandits (with a bound

on the number of changes)

• Algorithm needs to forget the history before the change.

• While computing empirical mean rewards, only consider the last τ

time steps.

• τ = size of the window.

Algorithm Sliding Window-UCB algorithm [Garivier and Moulines, 2011]

1: for t = 1, . . . ,K do
2: Choose each arm once.
3: end for
4: for t = K + 1, . . . do
5: Compute empirical means µ̂1(t − 1), . . . , µ̂K (t − 1) based on last

τ time steps.
6: Select arm i(t) = argmaxa [µ̂a(t − 1) + confidence term].
7: end for

10

How Does Sliding Window-UCB Work?

• After a change occurs, sliding window forgets the past and considers

history from the current setting.

11

Adversarial Bandits

Adversarial Bandits

• Reward distributions are stationary.

• Rewards are generated by a stochastic process Adversarial bandits.

• Learner can only select one arm at a time and sees absolute

feedback.

• Learner has no extra information about the arms.

12

Adversarial Rewards : Simple Example

A bandit game between the learner and an adversary .

Horizon T = 1 and number of arms = 2.

Learner’s goal : Minimize the learner’s regret.

Adversary’s goal : Maximize the learner’s regret.

1. The learner tells their policy to the adversary.

2. The learner selects an arm i according to their policy.

3. The adversary observes the selected arm and secretly chooses

rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

No matter what the learner does, the adversary can always cause linear

regret for the learner.

13

Adversarial Rewards : Simple Example

A bandit game between the learner and an adversary .

Horizon T = 1 and number of arms = 2.

Learner’s goal : Minimize the learner’s regret.

Adversary’s goal : Maximize the learner’s regret.

1. The learner tells their policy to the adversary.

2. The learner selects an arm i according to their policy.

3. The adversary observes the selected arm and secretly chooses

rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

No matter what the learner does, the adversary can always cause linear

regret for the learner.

13

Adversarial Rewards : Simple Example

A bandit game between the learner and an adversary .

Horizon T = 1 and number of arms = 2.

Learner’s goal : Minimize the learner’s regret.

Adversary’s goal : Maximize the learner’s regret.

1. The learner tells their policy to the adversary.

2. The learner selects an arm i according to their policy.

3. The adversary observes the selected arm and secretly chooses

rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

No matter what the learner does, the adversary can always cause linear

regret for the learner.

13

Adversarial Rewards : Simple Example

A bandit game between the learner and an adversary .

Horizon T = 1 and number of arms = 2.

Learner’s goal : Minimize the learner’s regret.

Adversary’s goal : Maximize the learner’s regret.

1. The learner tells their policy to the adversary.

2. The learner selects an arm i according to their policy.

3. The adversary observes the selected arm and secretly chooses

rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

No matter what the learner does, the adversary can always cause linear

regret for the learner.

13

Adversarial Rewards : Simple Example

A bandit game between the learner and an adversary .

Horizon T = 1 and number of arms = 2.

Learner’s goal : Minimize the learner’s regret.

Adversary’s goal : Maximize the learner’s regret.

1. The learner tells their policy to the adversary.

2. The learner selects an arm i according to their policy.

3. The adversary observes the selected arm and secretly chooses

rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

No matter what the learner does, the adversary can always cause linear

regret for the learner.

13

Adversarial Rewards : Simple Example

A bandit game between the learner and an adversary .

Horizon T = 1 and number of arms = 2.

Learner’s goal : Minimize the learner’s regret.

Adversary’s goal : Maximize the learner’s regret.

1. The learner tells their policy to the adversary.

2. The learner selects an arm i according to their policy.

3. The adversary observes the selected arm and secretly chooses

rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

No matter what the learner does, the adversary can always cause linear

regret for the learner.

13

Adversarial Rewards : Simple Example

A bandit game between the learner and an adversary .

Horizon T = 1 and number of arms = 2.

Learner’s goal : Minimize the learner’s regret.

Adversary’s goal : Maximize the learner’s regret.

1. The learner tells their policy to the adversary.

2. The learner selects an arm i according to their policy.

3. The adversary observes the selected arm and secretly chooses

rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

No matter what the learner does, the adversary can always cause linear

regret for the learner.

13

Adversarial Rewards : Simple Example

A bandit game between the learner and an adversary .

Horizon T = 1 and number of arms = 2.

Learner’s goal : Minimize the learner’s regret.

Adversary’s goal : Maximize the learner’s regret.

1. The learner tells their policy to the adversary.

2. The learner selects an arm i according to their policy.

3. The adversary observes the selected arm and secretly chooses

rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

No matter what the learner does, the adversary can always cause linear

regret for the learner.

13

Adversarial Rewards : Simple Example

A bandit game between the learner and an adversary .

Horizon T = 1 and number of arms = 2.

Learner’s goal : Minimize the learner’s regret.

Adversary’s goal : Maximize the learner’s regret.

1. The learner tells their policy to the adversary.

2. The learner selects an arm i according to their policy.

3. The adversary observes the selected arm and secretly chooses

rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

No matter what the learner does, the adversary can always cause linear

regret for the learner.

13

Adversarial Rewards with Oblivious Adversary

A bandit game between the learner and the adversary.

Horizon T = 1 and number of arms = 2.

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

3. The learner selects an arm i according to their policy.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

What happens if the the learner’s policy is deterministic?

14

Adversarial Rewards with Oblivious Adversary

A bandit game between the learner and the adversary.

Horizon T = 1 and number of arms = 2.

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

3. The learner selects an arm i according to their policy.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

What happens if the the learner’s policy is deterministic?

14

Adversarial Rewards with Oblivious Adversary

A bandit game between the learner and the adversary.

Horizon T = 1 and number of arms = 2.

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

3. The learner selects an arm i according to their policy.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

What happens if the the learner’s policy is deterministic?

14

Adversarial Rewards with Oblivious Adversary

A bandit game between the learner and the adversary.

Horizon T = 1 and number of arms = 2.

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

3. The learner selects an arm i according to their policy.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

What happens if the the learner’s policy is deterministic?

14

Adversarial Rewards with Oblivious Adversary

A bandit game between the learner and the adversary.

Horizon T = 1 and number of arms = 2.

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

3. The learner selects an arm i according to their policy.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

What happens if the the learner’s policy is deterministic?

14

Adversarial Rewards with Oblivious Adversary

A bandit game between the learner and the adversary.

Horizon T = 1 and number of arms = 2.

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

3. The learner selects an arm i according to their policy.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

What happens if the the learner’s policy is deterministic?

14

Adversarial Rewards with Oblivious Adversary

A bandit game between the learner and the adversary.

Horizon T = 1 and number of arms = 2.

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

3. The learner selects an arm i according to their policy.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

What happens if the the learner’s policy is deterministic?

14

Oblivious Adversarial Rewards : Deterministic Policy

Adversarial Rewards with Oblivious Adversary

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

3. The learner selects an arm i according to their policy.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

• If the learner implements a deterministic policy e.g., play arm 1,

the adversary can choose x1 = 0 and x2 = 1, since the adversary

knows the learner’s policy and,

the learner’s regret is 1.

• Deterministic policies cause linear regret!

15

Oblivious Adversarial Rewards : Deterministic Policy

Adversarial Rewards with Oblivious Adversary

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

3. The learner selects an arm i according to their policy.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

• If the learner implements a deterministic policy e.g., play arm 1,

the adversary can choose x1 = 0 and x2 = 1, since the adversary

knows the learner’s policy and,

the learner’s regret is 1.

• Deterministic policies cause linear regret!

15

Oblivious Adversarial Rewards : Randomized Policy

Adversarial Rewards with Oblivious Adversary

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

3. The learner selects an arm i according to their policy.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

• If the learner implements a randomized policy (e.g., play arm 1 with

probability 0.5),

the best the adversary can do is set x1 = 1 and x2 = 0, and

the learner’s expected regret = max{x1, x2} − E[r] = 1/2.

• Randomized policies can achieve sub-linear regret.

16

Oblivious Adversarial Rewards : Randomized Policy

Adversarial Rewards with Oblivious Adversary

1. The learner tells their policy to the the adversary.

2. The adversary secretly chooses rewards,

• for arm 1, reward x1 from {0, 1}, and
• for arm 2, reward x2 from {0, 1}.

3. The learner selects an arm i according to their policy.

4. The learner receives reward r = xi .

5. The regret is R = max{x1, x2} − r .

• If the learner implements a randomized policy (e.g., play arm 1 with

probability 0.5),

the best the adversary can do is set x1 = 1 and x2 = 0, and

the learner’s expected regret = max{x1, x2} − E[r] = 1/2.

• Randomized policies can achieve sub-linear regret.

16

Adversarial Bandits

• Number of arms = K and time horizon T .

• The adversary/environment chooses a sequence of reward vectors

x(t) = (x1(t), . . . , xK (t)) for t = 1, . . . ,T .

• At time steps t = 1, . . . ,T ,

• the learner selects an arm i(t);

• the learner receives reward r(t) := xi(t)(t).

• Performance measure?

17

Adversarial Bandits

• Number of arms = K and time horizon T .

• The adversary/environment chooses a sequence of reward vectors

x(t) = (x1(t), . . . , xK (t)) for t = 1, . . . ,T .

• At time steps t = 1, . . . ,T ,

• the learner selects an arm i(t);

• the learner receives reward r(t) := xi(t)(t).

• Performance measure?

17

Adversarial Bandits

• Number of arms = K and time horizon T .

• The adversary/environment chooses a sequence of reward vectors

x(t) = (x1(t), . . . , xK (t)) for t = 1, . . . ,T .

• At time steps t = 1, . . . ,T ,

• the learner selects an arm i(t);

• the learner receives reward r(t) := xi(t)(t).

• Performance measure?

17

Adversarial Bandits

• Number of arms = K and time horizon T .

• The adversary/environment chooses a sequence of reward vectors

x(t) = (x1(t), . . . , xK (t)) for t = 1, . . . ,T .

• At time steps t = 1, . . . ,T ,

• the learner selects an arm i(t);

• the learner receives reward r(t) := xi(t)(t).

• Performance measure?

17

Adversarial Bandits

• Number of arms = K and time horizon T .

• The adversary/environment chooses a sequence of reward vectors

x(t) = (x1(t), . . . , xK (t)) for t = 1, . . . ,T .

• At time steps t = 1, . . . ,T ,

• the learner selects an arm i(t);

• the learner receives reward r(t) := xi(t)(t).

• Performance measure?

17

Performance Measure : Regret I

• Recall that for stationary stochastic bandits, the goal was to

minimize

Rπ(T) := Tµ∗︸︷︷︸
Optimal expected cumulative reward

− E

[
T∑
t=1

r(t) | π

]
︸ ︷︷ ︸

Expected cumulative reward of π

.

• Benchmark policy : ‘always play the arm with highest mean reward’.

• Does that make any sense for adversarial rewards?

• Competing with the policy that always plays the best arm?

18

Performance Measure : Regret I

• Recall that for stationary stochastic bandits, the goal was to

minimize

Rπ(T) := Tµ∗︸︷︷︸
Optimal expected cumulative reward

− E

[
T∑
t=1

r(t) | π

]
︸ ︷︷ ︸

Expected cumulative reward of π

.

• Benchmark policy : ‘always play the arm with highest mean reward’.

• Does that make any sense for adversarial rewards?

• Competing with the policy that always plays the best arm?

18

Performance Measure : Regret I

• Recall that for stationary stochastic bandits, the goal was to

minimize

Rπ(T) := Tµ∗︸︷︷︸
Optimal expected cumulative reward

− E

[
T∑
t=1

r(t) | π

]
︸ ︷︷ ︸

Expected cumulative reward of π

.

• Benchmark policy : ‘always play the arm with highest mean reward’.

• Does that make any sense for adversarial rewards?

• Competing with the policy that always plays the best arm?

18

Performance Measure : Regret I

• Recall that for stationary stochastic bandits, the goal was to

minimize

Rπ(T) := Tµ∗︸︷︷︸
Optimal expected cumulative reward

− E

[
T∑
t=1

r(t) | π

]
︸ ︷︷ ︸

Expected cumulative reward of π

.

• Benchmark policy : ‘always play the arm with highest mean reward’.

• Does that make any sense for adversarial rewards?

• Competing with the policy that always plays the best arm?

18

Performance Measure : Regret I

• Recall that for stationary stochastic bandits, the goal was to

minimize

Rπ(T) := Tµ∗︸︷︷︸
Optimal expected cumulative reward

− E

[
T∑
t=1

r(t) | π

]
︸ ︷︷ ︸

Expected cumulative reward of π

.

• Benchmark policy : ‘always play the arm with highest mean reward’.

• Does that make any sense for adversarial rewards?

• Competing with the policy that always plays the best arm?

18

Performance Measure : Regret II

• The benchmark policy : ‘always play the best arm (in hindsight)’,

the best arm = argmax
a

T∑
t=1

xa(t).

• The cumulative reward of the benchmark policy = maxa
T∑
t=1

xa(t).

• The learner’s goal is to minimize the expected cumulative regret.

Rπ(T) :=max
a

T∑
t=1

xa(t)− E
π

[
T∑
t=1

r(t) | π

]

19

Performance Measure : Regret II

• The benchmark policy : ‘always play the best arm (in hindsight)’,

the best arm = argmax
a

T∑
t=1

xa(t).

• The cumulative reward of the benchmark policy = maxa
T∑
t=1

xa(t).

• The learner’s goal is to minimize the expected cumulative regret.

Rπ(T) :=max
a

T∑
t=1

xa(t)− E
π

[
T∑
t=1

r(t) | π

]

19

Performance Measure : Regret II

• The benchmark policy : ‘always play the best arm (in hindsight)’,

the best arm = argmax
a

T∑
t=1

xa(t).

• The cumulative reward of the benchmark policy = maxa
T∑
t=1

xa(t).

• The learner’s goal is to minimize the expected cumulative regret.

Rπ(T) :=max
a

T∑
t=1

xa(t)− E
π

[
T∑
t=1

r(t) | π

]

19

Algorithm for Adversarial Bandits : EXP3

• Assigns weight to each arm.

• Higher weight =⇒ higher

selection probability.

• γ = exploration parameter.

• Weight of the selected arm

is updated via an estimator.

• Arms producing more

rewards receive higher

weights.

Algorithm EXP3 [Auer et al., 2003]

1: For each arm a, initialize wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Pick i(t) ∼ p(t) = (p1, . . . , pK).
4: Receive reward r(t) := xi(t)(t).
5: for a = 1, 2, . . . ,K do

6: x̂a(t) =

{
r(t)
pa(t)

if a = i(t)

0 otherwise

7: wa(t + 1)← wa(t) exp (
γ
K x̂a(t)).

8: end for

20

Algorithm for Adversarial Bandits : EXP3

• Assigns weight to each arm.

• Higher weight =⇒ higher

selection probability.

• γ = exploration parameter.

• Weight of the selected arm

is updated via an estimator.

• Arms producing more

rewards receive higher

weights.

Algorithm EXP3 [Auer et al., 2003]

1: For each arm a, initialize wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Pick i(t) ∼ p(t) = (p1, . . . , pK).
4: Receive reward r(t) := xi(t)(t).
5: for a = 1, 2, . . . ,K do

6: x̂a(t) =

{
r(t)
pa(t)

if a = i(t)

0 otherwise

7: wa(t + 1)← wa(t) exp (
γ
K x̂a(t)).

8: end for

20

Algorithm for Adversarial Bandits : EXP3

• Assigns weight to each arm.

• Higher weight =⇒ higher

selection probability.

• γ = exploration parameter.

• Weight of the selected arm

is updated via an estimator.

• Arms producing more

rewards receive higher

weights.

Algorithm EXP3 [Auer et al., 2003]

1: For each arm a, initialize wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Pick i(t) ∼ p(t) = (p1, . . . , pK).
4: Receive reward r(t) := xi(t)(t).
5: for a = 1, 2, . . . ,K do

6: x̂a(t) =

{
r(t)
pa(t)

if a = i(t)

0 otherwise

7: wa(t + 1)← wa(t) exp (
γ
K x̂a(t)).

8: end for

20

Algorithm for Adversarial Bandits : EXP3

• Assigns weight to each arm.

• Higher weight =⇒ higher

selection probability.

• γ = exploration parameter.

• Weight of the selected arm

is updated via an estimator.

• Arms producing more

rewards receive higher

weights.

Algorithm EXP3 [Auer et al., 2003]

1: For each arm a, initialize wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Pick i(t) ∼ p(t) = (p1, . . . , pK).
4: Receive reward r(t) := xi(t)(t).
5: for a = 1, 2, . . . ,K do

6: x̂a(t) =

{
r(t)
pa(t)

if a = i(t)

0 otherwise

7: wa(t + 1)← wa(t) exp (
γ
K x̂a(t)).

8: end for

20

Algorithm for Adversarial Bandits : EXP3

• Assigns weight to each arm.

• Higher weight =⇒ higher

selection probability.

• γ = exploration parameter.

• Weight of the selected arm

is updated via an estimator.

• Arms producing more

rewards receive higher

weights.

Algorithm EXP3 [Auer et al., 2003]

1: For each arm a, initialize wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Pick i(t) ∼ p(t) = (p1, . . . , pK).
4: Receive reward r(t) := xi(t)(t).
5: for a = 1, 2, . . . ,K do

6: x̂a(t) =

{
r(t)
pa(t)

if a = i(t)

0 otherwise

7: wa(t + 1)← wa(t) exp (
γ
K x̂a(t)).

8: end for

20

Regret Bound for EXP3

Theorem (Auer et al. [2003])

The expected cumulative regret of EXP3 is O
(√

TK log(K)
)
.

21

Key Lemma in the Regret Analysis

Let “history”

Ft := i(1), i(2), . . . , i(t − 1).

Lemma

E[x̂a(t) | Ft] = xa(t).

• x̂a(t) estimates the reward

of arm a at time t.

Proof.

E[x̂a(t)]

=
[
pa(t) · xa(t)pa(t)

+ (1− pa(t)) · 0
]

= xa(t)

Algorithm EXP3 Auer et al. [2003]

1: For each arm a, initialize wa(1) = 1.
2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Pick i(t) ∼ p(t) = (p1, . . . , pK).
4: Receive reward r(t) := xi(t)(t).
5: for a = 1, 2, . . . ,K do

6: x̂a(t) =

{
r(t)
pa(t)

if a = i(t)

0 otherwise

7: wa(t + 1)← wa(t) · exp γ
K x̂a(t).

8: end for

22

Key Lemma in the Regret Analysis

Let “history”

Ft := i(1), i(2), . . . , i(t − 1).

Lemma

E[x̂a(t) | Ft] = xa(t).

• x̂a(t) estimates the reward

of arm a at time t.

Proof.

E[x̂a(t)]

=
[
pa(t) · xa(t)pa(t)

+ (1− pa(t)) · 0
]

= xa(t)

Algorithm EXP3 Auer et al. [2003]

1: For each arm a, initialize wa(1) = 1.
2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Pick i(t) ∼ p(t) = (p1, . . . , pK).
4: Receive reward r(t) := xi(t)(t).
5: for a = 1, 2, . . . ,K do

6: x̂a(t) =

{
r(t)
pa(t)

if a = i(t)

0 otherwise

7: wa(t + 1)← wa(t) · exp γ
K x̂a(t).

8: end for

22

Key Lemma in the Regret Analysis

Let “history”

Ft := i(1), i(2), . . . , i(t − 1).

Lemma

E[x̂a(t) | Ft] = xa(t).

• x̂a(t) estimates the reward

of arm a at time t.

Proof.

E[x̂a(t)]

=
[
pa(t) · xa(t)pa(t)

+ (1− pa(t)) · 0
]

= xa(t)

Algorithm EXP3 Auer et al. [2003]

1: For each arm a, initialize wa(1) = 1.
2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Pick i(t) ∼ p(t) = (p1, . . . , pK).
4: Receive reward r(t) := xi(t)(t).
5: for a = 1, 2, . . . ,K do

6: x̂a(t) =

{
r(t)
pa(t)

if a = i(t)

0 otherwise

7: wa(t + 1)← wa(t) · exp γ
K x̂a(t).

8: end for

22

Break

We start again after a break.

23

Dueling Bandits

Dueling Bandits

• Reward distributions are stationary.

• Rewards are assumed to be generated by a stochastic process.

• Learner can only select one arm at a time and sees absolute

feedback Dueling bandits.

• Learner has no extra information about the arms.

24

Feedback to the Learner?

Figure 1: DuckDuckGo search results Figure 2: Google search results

• So far, we have assumed the feedback is absolute.

• What if feedback is relative and not absolute?

• Practical scenario : Information retrieval in search engines.

• Relative feedback by interleaved filtering [Radlinski and Joachims,

2007]

25

Feedback to the Learner?

Figure 1: DuckDuckGo search results Figure 2: Google search results

• So far, we have assumed the feedback is absolute.

• What if feedback is relative and not absolute?

• Practical scenario : Information retrieval in search engines.

• Relative feedback by interleaved filtering [Radlinski and Joachims,

2007]

25

Feedback to the Learner?

Figure 1: DuckDuckGo search results Figure 2: Google search results

• So far, we have assumed the feedback is absolute.

• What if feedback is relative and not absolute?

• Practical scenario : Information retrieval in search engines.

• Relative feedback by interleaved filtering [Radlinski and Joachims,

2007]

25

Feedback to the Learner?

Figure 1: DuckDuckGo search results Figure 2: Google search results

• So far, we have assumed the feedback is absolute.

• What if feedback is relative and not absolute?

• Practical scenario : Information retrieval in search engines.

• Relative feedback by interleaved filtering [Radlinski and Joachims,

2007]

25

Adversarial Dueling Bandits : Mathematical Setting

• Number of arms = K and time horizon T .

• The adversary/environment chooses a sequence of reward vectors

x(t) = (x1(t), . . . , xK (t)) for t = 1, . . . ,T .

• At time steps t = 1, . . . ,T ,

• the learner selects two arms i(t) and j(t);

• the learner receives (hidden) reward r(t) :=
xi(t)(t)+xj(t)(t)

2
; and

• the learner sees relative feedback f (t) :=ψ(xi(t) − xj(t)) where ψ is

some feedback function.

• Performance measure?

26

Adversarial Dueling Bandits : Mathematical Setting

• Number of arms = K and time horizon T .

• The adversary/environment chooses a sequence of reward vectors

x(t) = (x1(t), . . . , xK (t)) for t = 1, . . . ,T .

• At time steps t = 1, . . . ,T ,

• the learner selects two arms i(t) and j(t);

• the learner receives (hidden) reward r(t) :=
xi(t)(t)+xj(t)(t)

2
; and

• the learner sees relative feedback f (t) :=ψ(xi(t) − xj(t)) where ψ is

some feedback function.

• Performance measure?

26

Adversarial Dueling Bandits : Mathematical Setting

• Number of arms = K and time horizon T .

• The adversary/environment chooses a sequence of reward vectors

x(t) = (x1(t), . . . , xK (t)) for t = 1, . . . ,T .

• At time steps t = 1, . . . ,T ,

• the learner selects two arms i(t) and j(t);

• the learner receives (hidden) reward r(t) :=
xi(t)(t)+xj(t)(t)

2
; and

• the learner sees relative feedback f (t) :=ψ(xi(t) − xj(t)) where ψ is

some feedback function.

• Performance measure?

26

Adversarial Dueling Bandits : Mathematical Setting

• Number of arms = K and time horizon T .

• The adversary/environment chooses a sequence of reward vectors

x(t) = (x1(t), . . . , xK (t)) for t = 1, . . . ,T .

• At time steps t = 1, . . . ,T ,

• the learner selects two arms i(t) and j(t);

• the learner receives (hidden) reward r(t) :=
xi(t)(t)+xj(t)(t)

2
; and

• the learner sees relative feedback f (t) :=ψ(xi(t) − xj(t)) where ψ is

some feedback function.

• Performance measure?

26

Adversarial Dueling Bandits : Mathematical Setting

• Number of arms = K and time horizon T .

• The adversary/environment chooses a sequence of reward vectors

x(t) = (x1(t), . . . , xK (t)) for t = 1, . . . ,T .

• At time steps t = 1, . . . ,T ,

• the learner selects two arms i(t) and j(t);

• the learner receives (hidden) reward r(t) :=
xi(t)(t)+xj(t)(t)

2
; and

• the learner sees relative feedback f (t) :=ψ(xi(t) − xj(t)) where ψ is

some feedback function.

• Performance measure?

26

Adversarial Dueling Bandits : Mathematical Setting

• Number of arms = K and time horizon T .

• The adversary/environment chooses a sequence of reward vectors

x(t) = (x1(t), . . . , xK (t)) for t = 1, . . . ,T .

• At time steps t = 1, . . . ,T ,

• the learner selects two arms i(t) and j(t);

• the learner receives (hidden) reward r(t) :=
xi(t)(t)+xj(t)(t)

2
; and

• the learner sees relative feedback f (t) :=ψ(xi(t) − xj(t)) where ψ is

some feedback function.

• Performance measure?

26

Performance Measure : Regret

• The benchmark policy : ‘always play the best arm (in hindsight)’.

• The cumulative reward of the benchmark policy = maxa
T∑
t=1

xa(t),

• The learner’s goal is to minimize the expected cumulative regret.

Rπ(T) :=max
a

T∑
t=1

xa(t)− E
π

[
T∑
t=1

r(t) | π

]

= max
a

T∑
t=1

xa(t)− E
π

 T∑
t=1

xi(t)(t) + xj(t)(t)

2


(where i(t) and j(t) are the arms picked at time t).

27

Performance Measure : Regret

• The benchmark policy : ‘always play the best arm (in hindsight)’.

• The cumulative reward of the benchmark policy = maxa
T∑
t=1

xa(t),

• The learner’s goal is to minimize the expected cumulative regret.

Rπ(T) :=max
a

T∑
t=1

xa(t)− E
π

[
T∑
t=1

r(t) | π

]

= max
a

T∑
t=1

xa(t)− E
π

 T∑
t=1

xi(t)(t) + xj(t)(t)

2


(where i(t) and j(t) are the arms picked at time t).

27

Performance Measure : Regret

• The benchmark policy : ‘always play the best arm (in hindsight)’.

• The cumulative reward of the benchmark policy = maxa
T∑
t=1

xa(t),

• The learner’s goal is to minimize the expected cumulative regret.

Rπ(T) :=max
a

T∑
t=1

xa(t)− E
π

[
T∑
t=1

r(t) | π

]

= max
a

T∑
t=1

xa(t)− E
π

 T∑
t=1

xi(t)(t) + xj(t)(t)

2


(where i(t) and j(t) are the arms picked at time t).

27

Performance Measure : Regret

• The benchmark policy : ‘always play the best arm (in hindsight)’.

• The cumulative reward of the benchmark policy = maxa
T∑
t=1

xa(t),

• The learner’s goal is to minimize the expected cumulative regret.

Rπ(T) :=max
a

T∑
t=1

xa(t)− E
π

[
T∑
t=1

r(t) | π

]

= max
a

T∑
t=1

xa(t)− E
π

 T∑
t=1

xi(t)(t) + xj(t)(t)

2


(where i(t) and j(t) are the arms picked at time t).

27

Lower Bound

• Lower bound of a problem shows the best performance any

algorithm can achieve for that problem.

• Lower bound tells you the hardness of the problem.

• If upper bound of an algorithm ≃ lower bound,

then, the algorithm is (close) to optimal.

• Form of a typical lower bound : For any algorithm A, there exists an

instance of the problem such that regret of A is at least

• Lower bound for stationary stochastic bandits =
√
KT [Auer et al.,

2003]

28

Lower Bound

• Lower bound of a problem shows the best performance any

algorithm can achieve for that problem.

• Lower bound tells you the hardness of the problem.

• If upper bound of an algorithm ≃ lower bound,

then, the algorithm is (close) to optimal.

• Form of a typical lower bound : For any algorithm A, there exists an

instance of the problem such that regret of A is at least

• Lower bound for stationary stochastic bandits =
√
KT [Auer et al.,

2003]

28

Lower Bound

• Lower bound of a problem shows the best performance any

algorithm can achieve for that problem.

• Lower bound tells you the hardness of the problem.

• If upper bound of an algorithm ≃ lower bound,

then, the algorithm is (close) to optimal.

• Form of a typical lower bound : For any algorithm A, there exists an

instance of the problem such that regret of A is at least

• Lower bound for stationary stochastic bandits =
√
KT [Auer et al.,

2003]

28

Lower Bound

• Lower bound of a problem shows the best performance any

algorithm can achieve for that problem.

• Lower bound tells you the hardness of the problem.

• If upper bound of an algorithm ≃ lower bound,

then, the algorithm is (close) to optimal.

• Form of a typical lower bound : For any algorithm A, there exists an

instance of the problem such that regret of A is at least

• Lower bound for stationary stochastic bandits =
√
KT [Auer et al.,

2003]

28

Lower Bound

• Lower bound of a problem shows the best performance any

algorithm can achieve for that problem.

• Lower bound tells you the hardness of the problem.

• If upper bound of an algorithm ≃ lower bound,

then, the algorithm is (close) to optimal.

• Form of a typical lower bound : For any algorithm A, there exists an

instance of the problem such that regret of A is at least

• Lower bound for stationary stochastic bandits =
√
KT [Auer et al.,

2003]

28

Reducing Problem A to Problem B

• Problem A is reducible to problem B,

if an algorithm for solving problem B efficiently could also be used as

a subroutine to solve problem A efficiently.

• When this is true, solving A cannot be harder than solving B;

i.e., solving B is at least as hard as solving A.

For more information, click here.

• Idea : Reduce stationary stochastic bandits to dueling bandits.

• Reduction shows that solving dueling bandits is at least as hard as

solving stationary stochastic bandits.

• Lower bound for dueling bandits = Lower bound for stationary

stochastic bandits.

29

https://en.wikipedia.org/wiki/Reduction_(complexity)

Reducing Problem A to Problem B

• Problem A is reducible to problem B,

if an algorithm for solving problem B efficiently could also be used as

a subroutine to solve problem A efficiently.

• When this is true, solving A cannot be harder than solving B;

i.e., solving B is at least as hard as solving A.

For more information, click here.

• Idea : Reduce stationary stochastic bandits to dueling bandits.

• Reduction shows that solving dueling bandits is at least as hard as

solving stationary stochastic bandits.

• Lower bound for dueling bandits = Lower bound for stationary

stochastic bandits.

29

https://en.wikipedia.org/wiki/Reduction_(complexity)

Reducing Problem A to Problem B

• Problem A is reducible to problem B,

if an algorithm for solving problem B efficiently could also be used as

a subroutine to solve problem A efficiently.

• When this is true, solving A cannot be harder than solving B;

i.e., solving B is at least as hard as solving A.

For more information, click here.

• Idea : Reduce stationary stochastic bandits to dueling bandits.

• Reduction shows that solving dueling bandits is at least as hard as

solving stationary stochastic bandits.

• Lower bound for dueling bandits = Lower bound for stationary

stochastic bandits.

29

https://en.wikipedia.org/wiki/Reduction_(complexity)

Reducing Problem A to Problem B

• Problem A is reducible to problem B,

if an algorithm for solving problem B efficiently could also be used as

a subroutine to solve problem A efficiently.

• When this is true, solving A cannot be harder than solving B;

i.e., solving B is at least as hard as solving A.

For more information, click here.

• Idea : Reduce stationary stochastic bandits to dueling bandits.

• Reduction shows that solving dueling bandits is at least as hard as

solving stationary stochastic bandits.

• Lower bound for dueling bandits = Lower bound for stationary

stochastic bandits.

29

https://en.wikipedia.org/wiki/Reduction_(complexity)

Reducing Problem A to Problem B

• Problem A is reducible to problem B,

if an algorithm for solving problem B efficiently could also be used as

a subroutine to solve problem A efficiently.

• When this is true, solving A cannot be harder than solving B;

i.e., solving B is at least as hard as solving A.

For more information, click here.

• Idea : Reduce stationary stochastic bandits to dueling bandits.

• Reduction shows that solving dueling bandits is at least as hard as

solving stationary stochastic bandits.

• Lower bound for dueling bandits = Lower bound for stationary

stochastic bandits.

29

https://en.wikipedia.org/wiki/Reduction_(complexity)

Lower Bound for Dueling Bandits

• A generic dueling bandits algorithm DBA with following procedures:

decide() and update().

• A stationary stochastic bandit environment CBE with get reward()

procedure.

Algorithm Reduction from stationary stochastic bandits

Repeat
1: (i , j)← DBA.decide(t).
2: xi (t)← CBE.get reward(i).
3: xj(t + 1)← CBE.get reward(j).
4: DBA.update(t, (i , j), ψ(xi − xj)).
5: t = t + 2.

Until t ≥ T

• Cumulative reward of DBA = E
[∑

t
xi (t)+xj (t+1)

2

]
• E [CB cumulative reward of above procedure]

= E[
∑

t xi (t) + xj(t + 1)] = 2 ∗ E [cumulative reward of DBA]

• E[Regret of DBA] is of the same order as E[Regret of CB].

30

Lower Bound for Dueling Bandits

• A generic dueling bandits algorithm DBA with following procedures:

decide() and update().

• A stationary stochastic bandit environment CBE with get reward()

procedure.

Algorithm Reduction from stationary stochastic bandits

Repeat
1: (i , j)← DBA.decide(t).
2: xi (t)← CBE.get reward(i).
3: xj(t + 1)← CBE.get reward(j).
4: DBA.update(t, (i , j), ψ(xi − xj)).
5: t = t + 2.

Until t ≥ T

• Cumulative reward of DBA = E
[∑

t
xi (t)+xj (t+1)

2

]
• E [CB cumulative reward of above procedure]

= E[
∑

t xi (t) + xj(t + 1)] = 2 ∗ E [cumulative reward of DBA]

• E[Regret of DBA] is of the same order as E[Regret of CB].

30

Lower Bound for Dueling Bandits

• A generic dueling bandits algorithm DBA with following procedures:

decide() and update().

• A stationary stochastic bandit environment CBE with get reward()

procedure.

Algorithm Reduction from stationary stochastic bandits

Repeat
1: (i , j)← DBA.decide(t).
2: xi (t)← CBE.get reward(i).
3: xj(t + 1)← CBE.get reward(j).
4: DBA.update(t, (i , j), ψ(xi − xj)).
5: t = t + 2.

Until t ≥ T

• Cumulative reward of DBA = E
[∑

t
xi (t)+xj (t+1)

2

]
• E [CB cumulative reward of above procedure]

= E[
∑

t xi (t) + xj(t + 1)] = 2 ∗ E [cumulative reward of DBA]

• E[Regret of DBA] is of the same order as E[Regret of CB].

30

Lower Bound for Dueling Bandits

• A generic dueling bandits algorithm DBA with following procedures:

decide() and update().

• A stationary stochastic bandit environment CBE with get reward()

procedure.

Algorithm Reduction from stationary stochastic bandits

Repeat
1: (i , j)← DBA.decide(t).
2: xi (t)← CBE.get reward(i).
3: xj(t + 1)← CBE.get reward(j).
4: DBA.update(t, (i , j), ψ(xi − xj)).
5: t = t + 2.

Until t ≥ T

• Cumulative reward of DBA = E
[∑

t
xi (t)+xj (t+1)

2

]

• E [CB cumulative reward of above procedure]

= E[
∑

t xi (t) + xj(t + 1)] = 2 ∗ E [cumulative reward of DBA]

• E[Regret of DBA] is of the same order as E[Regret of CB].

30

Lower Bound for Dueling Bandits

• A generic dueling bandits algorithm DBA with following procedures:

decide() and update().

• A stationary stochastic bandit environment CBE with get reward()

procedure.

Algorithm Reduction from stationary stochastic bandits

Repeat
1: (i , j)← DBA.decide(t).
2: xi (t)← CBE.get reward(i).
3: xj(t + 1)← CBE.get reward(j).
4: DBA.update(t, (i , j), ψ(xi − xj)).
5: t = t + 2.

Until t ≥ T

• Cumulative reward of DBA = E
[∑

t
xi (t)+xj (t+1)

2

]
• E [CB cumulative reward of above procedure]

= E[
∑

t xi (t) + xj(t + 1)] = 2 ∗ E [cumulative reward of DBA]

• E[Regret of DBA] is of the same order as E[Regret of CB].

30

Lower Bound for Dueling Bandits

• A generic dueling bandits algorithm DBA with following procedures:

decide() and update().

• A stationary stochastic bandit environment CBE with get reward()

procedure.

Algorithm Reduction from stationary stochastic bandits

Repeat
1: (i , j)← DBA.decide(t).
2: xi (t)← CBE.get reward(i).
3: xj(t + 1)← CBE.get reward(j).
4: DBA.update(t, (i , j), ψ(xi − xj)).
5: t = t + 2.

Until t ≥ T

• Cumulative reward of DBA = E
[∑

t
xi (t)+xj (t+1)

2

]
• E [CB cumulative reward of above procedure]

= E[
∑

t xi (t) + xj(t + 1)] = 2 ∗ E [cumulative reward of DBA]

• E[Regret of DBA] is of the same order as E[Regret of CB]. 30

Algorithm for Adversarial Dueling Bandits : REX3

• Assigns weight to each arm.

• Higher weight =⇒ higher

selection probability.

• γ ∈ (0, 0.5) exploration

parameter.

• Weights of the selected

arms are updated.

• Arms winning more duels

receive higher weights.

Algorithm REX3 (PG et al.)

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj

31

https://proceedings.mlr.press/v37/gajane15.html

Algorithm for Adversarial Dueling Bandits : REX3

• Assigns weight to each arm.

• Higher weight =⇒ higher

selection probability.

• γ ∈ (0, 0.5) exploration

parameter.

• Weights of the selected

arms are updated.

• Arms winning more duels

receive higher weights.

Algorithm REX3 (PG et al.)

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj

31

https://proceedings.mlr.press/v37/gajane15.html

Algorithm for Adversarial Dueling Bandits : REX3

• Assigns weight to each arm.

• Higher weight =⇒ higher

selection probability.

• γ ∈ (0, 0.5) exploration

parameter.

• Weights of the selected

arms are updated.

• Arms winning more duels

receive higher weights.

Algorithm REX3 (PG et al.)

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj

31

https://proceedings.mlr.press/v37/gajane15.html

Algorithm for Adversarial Dueling Bandits : REX3

• Assigns weight to each arm.

• Higher weight =⇒ higher

selection probability.

• γ ∈ (0, 0.5) exploration

parameter.

• Weights of the selected

arms are updated.

• Arms winning more duels

receive higher weights.

Algorithm REX3 (PG et al.)

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj

31

https://proceedings.mlr.press/v37/gajane15.html

How Does REX3 Work?

Weights at t = 0

(γ = 0.4)

• Update weight according to

(relative) feedback.

Algorithm REX3

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj

32

How Does REX3 Work?

i = 1, j = 2

1 wins the duel

Weights at t = 1

• Weight may decrease.

Algorithm REX3

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj

32

How Does REX3 Work?

i = 1, j = 3

1 wins the duel

Weights at t = 2

• Weights increase at arms

which win regularly.

Algorithm REX3

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj

32

Regret Upper Bound for REX3

Theorem (PG et al., 2015)

The expected cumulative regret of REX3 is O
(√

TK log(K)
)
.

• The upper bound is only
√
log(K) away than the lower bound

√
KT

so REX3 is near-optimal.

33

https://proceedings.mlr.press/v37/gajane15.html

Regret Upper Bound for REX3

Theorem (PG et al., 2015)

The expected cumulative regret of REX3 is O
(√

TK log(K)
)
.

• The upper bound is only
√
log(K) away than the lower bound

√
KT

so REX3 is near-optimal.

33

https://proceedings.mlr.press/v37/gajane15.html

Analysis

• binary rewards i.e.,

xa(t) = either 0 or 1,

for all arms a and all time steps t.

• Feedback function ψ is identity i.e., when arms i and j are selected,

feedback = f :=ψ(xi − xj) = xi − xj

• When when arms i and j are selected,

feedback = f =


−1 if xi < xj

0 if xi = xj

+1 if xi > xj

34

Analysis

• binary rewards i.e.,

xa(t) = either 0 or 1,

for all arms a and all time steps t.

• Feedback function ψ is identity i.e., when arms i and j are selected,

feedback = f :=ψ(xi − xj) = xi − xj

• When when arms i and j are selected,

feedback = f =


−1 if xi < xj

0 if xi = xj

+1 if xi > xj

34

Analysis

• binary rewards i.e.,

xa(t) = either 0 or 1,

for all arms a and all time steps t.

• Feedback function ψ is identity i.e., when arms i and j are selected,

feedback = f :=ψ(xi − xj) = xi − xj

• When when arms i and j are selected,

feedback = f =


−1 if xi < xj

0 if xi = xj

+1 if xi > xj

34

Estimator for an arm

• Let

ĉa(t) := I[a = i]
(xi − xj)

2pi

+ I[a = j]
(xj − xi)

2pj

where i and j are the arms

picked at time t.

• Step 4 is equivalent to :

for each arm a,

wa(t + 1) = wa(t) · e
γ
K ĉa(t)

Algorithm REX3

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj

35

Estimator for an arm

• Let

ĉa(t) := I[a = i]
(xi − xj)

2pi

+ I[a = j]
(xj − xi)

2pj

where i and j are the arms

picked at time t.

• Step 4 is equivalent to :

for each arm a,

wa(t + 1) = wa(t) · e
γ
K ĉa(t)

Algorithm REX3

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj

35

Estimator for an arm

• Let

ĉa(t) := I[a = i]
(xi − xj)

2pi

+ I[a = j]
(xj − xi)

2pj

where i and j are the arms

picked at time t.

• Step 4 is equivalent to :

for each arm a,

wa(t + 1) = wa(t) · e
γ
K ĉa(t)

Algorithm REX3

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj

35

Main Lemma

• Step 4 is equivalent to :

for each arm a,

wa(t + 1) = wa(t) · e
γ
K ĉa(t)

Let Ft := i(1), j(1), . . . , i(t), j(t).

Lemma (Lemma 1 in PG et al.)

E[ĉa(t) | Ft] =

Ei∼p(t)[xa(t)− xi (t)].

• ĉa(t) estimates the relative

utility/advantage of picking

arm a instead of picking an arm

according to p(t).

Algorithm REX3

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj

36

https://proceedings.mlr.press/v37/gajane15.html

Main Lemma

• Step 4 is equivalent to :

for each arm a,

wa(t + 1) = wa(t) · e
γ
K ĉa(t)

Let Ft := i(1), j(1), . . . , i(t), j(t).

Lemma (Lemma 1 in PG et al.)

E[ĉa(t) | Ft] =

Ei∼p(t)[xa(t)− xi (t)].

• ĉa(t) estimates the relative

utility/advantage of picking

arm a instead of picking an arm

according to p(t).

Algorithm REX3

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj

36

https://proceedings.mlr.press/v37/gajane15.html

Main Lemma

• Step 4 is equivalent to :

for each arm a,

wa(t + 1) = wa(t) · e
γ
K ĉa(t)

Let Ft := i(1), j(1), . . . , i(t), j(t).

Lemma (Lemma 1 in PG et al.)

E[ĉa(t) | Ft] =

Ei∼p(t)[xa(t)− xi (t)].

• ĉa(t) estimates the relative

utility/advantage of picking

arm a instead of picking an arm

according to p(t).

Algorithm REX3

1: For each arm a, initialize weights

wa(1) = 1.

2: At time t, for each arm a,

pa ← (1− γ) wa(t)∑K
b=1 wb(t)

+
γ

K

3: Sample

i , j ∼ p(t) = (p1, . . . , pK) ,

get f (t) = ψ(xi − xj).

4: wi (t + 1)← wi (t) · e
γ
K

f (t)
2pi

wj(t + 1)← wj(t) · e
− γ

K
f (t)
2pj

36

https://proceedings.mlr.press/v37/gajane15.html

Proof of Main Lemma

Lemma (Lemma 1 in in PG et al.)

E[ĉa(t) | Ft] = Ei∼p(t)[xa(t)− xi (t)].

Proof.

Recall number of arms = K , p(t) = arm selection probabilities,

E[x] :=
∑

i i · P(x = i) and ĉa(t) := I[a = i]
(xi−xj)
2pi

+ I[a = j]
(xj−xi)
2pj

.

E
(i,j)∼p(t)

[ĉa(t)] =
K∑

m=1

K∑
n=1

pmpn

[
I[a = m]

(xm − xn)

2pm
+ I[a = n]

(xn − xm)

2pn

]

=
K∑

m=1

K∑
n=1

��pm pn I[a = m]
(xm − xn)

2��pm

+
K∑

m=1

K∑
n=1

pm��pn I[a = n]
(xn − xm)

2��pn

=
K∑

n=1

pn
(xa − xn)

2
+

K∑
m=1

pm
(xa − xm)

2

= E
i∼p(t)

[xa(t)− xi (t)].

37

https://proceedings.mlr.press/v37/gajane15.html

Proof of Main Lemma

Lemma (Lemma 1 in in PG et al.)

E[ĉa(t) | Ft] = Ei∼p(t)[xa(t)− xi (t)].

Proof. Recall number of arms = K , p(t) = arm selection probabilities,

E[x] :=
∑

i i · P(x = i) and ĉa(t) := I[a = i]
(xi−xj)
2pi

+ I[a = j]
(xj−xi)
2pj

.

E
(i,j)∼p(t)

[ĉa(t)] =
K∑

m=1

K∑
n=1

pmpn

[
I[a = m]

(xm − xn)

2pm
+ I[a = n]

(xn − xm)

2pn

]

=
K∑

m=1

K∑
n=1

��pm pn I[a = m]
(xm − xn)

2��pm

+
K∑

m=1

K∑
n=1

pm��pn I[a = n]
(xn − xm)

2��pn

=
K∑

n=1

pn
(xa − xn)

2
+

K∑
m=1

pm
(xa − xm)

2

= E
i∼p(t)

[xa(t)− xi (t)].

37

https://proceedings.mlr.press/v37/gajane15.html

Proof of Main Lemma

Lemma (Lemma 1 in in PG et al.)

E[ĉa(t) | Ft] = Ei∼p(t)[xa(t)− xi (t)].

Proof. Recall number of arms = K , p(t) = arm selection probabilities,

E[x] :=
∑

i i · P(x = i) and ĉa(t) := I[a = i]
(xi−xj)
2pi

+ I[a = j]
(xj−xi)
2pj

.

E
(i,j)∼p(t)

[ĉa(t)] =
K∑

m=1

K∑
n=1

pmpn

[
I[a = m]

(xm − xn)

2pm
+ I[a = n]

(xn − xm)

2pn

]

=
K∑

m=1

K∑
n=1

��pm pn I[a = m]
(xm − xn)

2��pm

+
K∑

m=1

K∑
n=1

pm��pn I[a = n]
(xn − xm)

2��pn

=
K∑

n=1

pn
(xa − xn)

2
+

K∑
m=1

pm
(xa − xm)

2

= E
i∼p(t)

[xa(t)− xi (t)].

37

https://proceedings.mlr.press/v37/gajane15.html

Proof of Main Lemma

Lemma (Lemma 1 in in PG et al.)

E[ĉa(t) | Ft] = Ei∼p(t)[xa(t)− xi (t)].

Proof. Recall number of arms = K , p(t) = arm selection probabilities,

E[x] :=
∑

i i · P(x = i) and ĉa(t) := I[a = i]
(xi−xj)
2pi

+ I[a = j]
(xj−xi)
2pj

.

E
(i,j)∼p(t)

[ĉa(t)] =
K∑

m=1

K∑
n=1

pmpn

[
I[a = m]

(xm − xn)

2pm
+ I[a = n]

(xn − xm)

2pn

]

=
K∑

m=1

K∑
n=1

��pm pn I[a = m]
(xm − xn)

2��pm

+
K∑

m=1

K∑
n=1

pm��pn I[a = n]
(xn − xm)

2��pn

=
K∑

n=1

pn
(xa − xn)

2
+

K∑
m=1

pm
(xa − xm)

2

= E
i∼p(t)

[xa(t)− xi (t)].

37

https://proceedings.mlr.press/v37/gajane15.html

Proof of Main Lemma

Lemma (Lemma 1 in in PG et al.)

E[ĉa(t) | Ft] = Ei∼p(t)[xa(t)− xi (t)].

Proof. Recall number of arms = K , p(t) = arm selection probabilities,

E[x] :=
∑

i i · P(x = i) and ĉa(t) := I[a = i]
(xi−xj)
2pi

+ I[a = j]
(xj−xi)
2pj

.

E
(i,j)∼p(t)

[ĉa(t)] =
K∑

m=1

K∑
n=1

pmpn

[
I[a = m]

(xm − xn)

2pm
+ I[a = n]

(xn − xm)

2pn

]

=
K∑

m=1

K∑
n=1

��pm pn I[a = m]
(xm − xn)

2��pm

+
K∑

m=1

K∑
n=1

pm��pn I[a = n]
(xn − xm)

2��pn

=
K∑

n=1

pn
(xa − xn)

2
+

K∑
m=1

pm
(xa − xm)

2

= E
i∼p(t)

[xa(t)− xi (t)].

37

https://proceedings.mlr.press/v37/gajane15.html

Proof of Main Lemma

Lemma (Lemma 1 in in PG et al.)

E[ĉa(t) | Ft] = Ei∼p(t)[xa(t)− xi (t)].

Proof. Recall number of arms = K , p(t) = arm selection probabilities,

E[x] :=
∑

i i · P(x = i) and ĉa(t) := I[a = i]
(xi−xj)
2pi

+ I[a = j]
(xj−xi)
2pj

.

E
(i,j)∼p(t)

[ĉa(t)] =
K∑

m=1

K∑
n=1

pmpn

[
I[a = m]

(xm − xn)

2pm
+ I[a = n]

(xn − xm)

2pn

]

=
K∑

m=1

K∑
n=1

��pm pn I[a = m]
(xm − xn)

2��pm

+
K∑

m=1

K∑
n=1

pm��pn I[a = n]
(xn − xm)

2��pn

=
K∑

n=1

pn
(xa − xn)

2
+

K∑
m=1

pm
(xa − xm)

2

= E
i∼p(t)

[xa(t)− xi (t)].
37

https://proceedings.mlr.press/v37/gajane15.html

Contextual Bandits

Contextual Bandits

• Reward distributions are stationary.

• Rewards are assumed to be generated by a stochastic process.

• Learner can only select one arm at a time and sees absolute

feedback.

• Learner has no extra information about the arms. Contextual

bandits.

38

Availability of Extra Information

Figure 3: Google search results

• Observation of extra information (context) before choosing an

action.

• Practical scenario : News recommendation, ad selection.

39

Contextual Bandits : Mathematical Setting

• At each time step t = 1, 2, . . . ,T

• the learner observes feature vector (context) xt ∈ Rd ,

• the learner chooses an arm i(t) and,

• the learner receives a reward r(t) = rt,i(t).

• Linear dependence : E[rt,a | xt] = xt · θa for some unknown vector

θa ∈ Rd .

40

Contextual Bandits : Mathematical Setting

• At each time step t = 1, 2, . . . ,T

• the learner observes feature vector (context) xt ∈ Rd ,

• the learner chooses an arm i(t) and,

• the learner receives a reward r(t) = rt,i(t).

• Linear dependence : E[rt,a | xt] = xt · θa for some unknown vector

θa ∈ Rd .

40

Contextual Bandits : Mathematical Setting

• At each time step t = 1, 2, . . . ,T

• the learner observes feature vector (context) xt ∈ Rd ,

• the learner chooses an arm i(t) and,

• the learner receives a reward r(t) = rt,i(t).

• Linear dependence : E[rt,a | xt] = xt · θa for some unknown vector

θa ∈ Rd .

40

Contextual Bandits : Mathematical Setting

• At each time step t = 1, 2, . . . ,T

• the learner observes feature vector (context) xt ∈ Rd ,

• the learner chooses an arm i(t) and,

• the learner receives a reward r(t) = rt,i(t).

• Linear dependence : E[rt,a | xt] = xt · θa for some unknown vector

θa ∈ Rd .

40

Contextual Bandits : Mathematical Setting

• At each time step t = 1, 2, . . . ,T

• the learner observes feature vector (context) xt ∈ Rd ,

• the learner chooses an arm i(t) and,

• the learner receives a reward r(t) = rt,i(t).

• Linear dependence : E[rt,a | xt] = xt · θa for some unknown vector

θa ∈ Rd .

40

Example

Image source: blogpost

41

https://kfoofw.github.io/contextual-bandits-linear-ucb-disjoint/

Algorithm for Linear Contextual Bandits

Algorithm LinUCB [Li et al., 2010]

1: Compute confidence regions Ca,t for each arm a.
2: Observe feature vector (context) xt ∈ Rd .
3: For each arm a, compute

UCBt(a | xt,a) = sup
θ̂a∈Ca,t

xt · θ̂a

4: Select the arm which maximizes UCBt(a | xt,a)

42

Summary

• Non-stationary Stochastic Bandits.

• Adversarial Bandits.

• Dueling Bandits (and a Lower Bound)

• Contextual Bandits.

43

Next Lecture

• Reinforcement learning in Markov decision processes.

• A near-optimal algorithm : UCRL.

44

References i

References

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire.

The nonstochastic multiarmed bandit problem. SIAM J. Comput., 32(1):

48–77, jan 2003. ISSN 0097-5397. doi: 10.1137/S0097539701398375.

URL https://doi.org/10.1137/S0097539701398375.

Aurélien Garivier and Eric Moulines. On upper-confidence bound policies

for switching bandit problems. In Jyrki Kivinen, Csaba Szepesvári, Esko

Ukkonen, and Thomas Zeugmann, editors, Algorithmic Learning Theory,

pages 174–188, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

ISBN 978-3-642-24412-4.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-

bandit approach to personalized news article recommendation, 2010.

45

https://doi.org/10.1137/S0097539701398375

References ii

F. Radlinski and T. Joachims. Active exploration for learning rankings

from clickthrough data. In KDD 2007, pages 570–579. ACM, 2007. doi:

10.1145/1281192.1281254.

46

	Introduction
	Non-stationary Stochastic Bandits
	Adversarial Bandits
	Dueling Bandits
	Contextual Bandits
	References

