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A Quick Recap of Lecture 1

Introduction to reinforcement learning (RL).

Mathematical formulation of a RL problem.

Formulating RL with multi-armed bandits and its variants.

Formulating RL with Markov decision processes.



Recap Lecture 2: Stationary stochastic bandits

Image source : Microsoft research

e At each time step t, the agent selects an action i(t) and then
receives a numerical reward r(t) ~ Xy with mean y;c).
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e At each time step t, the agent selects an action i(t) and then
receives a numerical reward r(t) ~ Xy with mean y;c).

e Agent's goal: Minimize the expected regret of its policy 7
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t=1

R (T) = T, - E

Optimal expected cumulative reward

Expected cumulative reward of 7

where 11, is the optimal mean reward and T is the horizon.

e Our aim: Construct an algorithm with sub-linear regret (featuring
terms like v/ T or log T, but not 7).


https\protect \protect \leavevmode@ifvmode \kern +.1667em\relax ://www.microsoft.com/en-us/research/

Recap Lecture 2: UCB

Algorithm UCB algorithm Auer et al. [2002]

Parameters: Confidence level §
fort=1,...,K do
Choose each arm once.
end for
fort=K-+1,... do
Compute empirical means fi1(t — 1),..., ik (t — 1).

Select arm i(t) = arg max, {ﬁa(t 1)+ 2,\';:%&/16))]
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. end for
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Recap Lecture 2: UCB

Algorithm UCB algorithm Auer et al. [2002]

Parameters: Confidence level §

1: fort=1,...,K do
2 Choose each arm once.
3: end for
4. fort=K+1,... do
5: Compute empirical means fi1(t — 1),..., ik (t — 1).
6:  Select arm i(t) = argmax, {ﬁa(t - 1)+ 2,\',°%t(i/16))]
7: end for
e Distribution-dependent regret bound Z %g(ﬂ + 3A,
a:A,>0

(recall that A, = i — pa).

e Distribution-free regret bound O(y/KT log(T)).

f(x) = O(g(x)), if f(x) < Cg(x) for all x > n. For more information, click here.


https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/big-o-notation

UCB : Solving Bandits from a Frequentist Perspective
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Lower Bound

e Build confidence intervals around empirical mean rewards.

Confidence term for arm a = %
Confidence interval for arm a = {ﬂa - %7 s+ %}



UCB : Solving Bandits from a Frequentist Perspective

Upper Bound l

Confidence term []Conﬁden:e term
12
. Confidence term
C(Imfldenlce i i Confidence term
nterval 43
2z
Lower Bound

e Build confidence intervals around empirical mean rewards.

Confidence term for arm a = %

Confidence interval for arm a = {ﬂa — 2'°g 1/5 Pa+ 4/ 2'°gt(1/16 }

e Arm selection rule using the size of the confidence interval.

Select arm i(t) = arg max, [ﬂa(f -1)+ %]'



Lecture 3: Outline

e Solving Bandits from a Bayesian Perspective
e Thompson Sampling

e Regret Bound for Thompson Sampling
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Perspective



Solving Bandits from a Bayesian Perspective

Define a prior distribution that incorporates your subjective beliefs about
unknown parameters i.e. mean rewards.



Solving Bandits from a Bayesian Perspective

Define a prior distribution that incorporates your subjective beliefs about
unknown parameters i.e. mean rewards.
At each time step t,

1. Sample a particular set of parameters from the prior.



Solving Bandits from a Bayesian Perspective

Define a prior distribution that incorporates your subjective beliefs about
unknown parameters i.e. mean rewards.
At each time step t,

1. Sample a particular set of parameters from the prior.

2. Select arm i(t) = arg max; reward; | parameters



Solving Bandits from a Bayesian Perspective

Define a prior distribution that incorporates your subjective beliefs about
unknown parameters i.e. mean rewards.
At each time step t,

1. Sample a particular set of parameters from the prior.
2. Select arm i(t) = arg max; reward; | parameters

3. Observe reward and update posterior.



Solving Bandits from a Bayesian Perspective

Define a prior distribution that incorporates your subjective beliefs about
unknown parameters i.e. mean rewards.
At each time step t,

1. Sample a particular set of parameters from the prior.
2. Select arm i(t) = arg max; reward; | parameters

3. Observe reward and update posterior.
(Prior at time t 4 1 < posterior at time t)
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Solving bandits from a Bayesian perspective

Choose a prior for the mean reward of each arm.
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Solving bandits from a Bayesian perspective

Choose a prior for the mean reward of each arm.
At each time step,

1. Sample a particular set of parameters from the prior.
2. Select arm i(t) = arg max; reward; | parameters

3. Observe reward and update posterior.

e Beta(a, 3) is a family of continuous distributions defined on [0, 1].

Probability density function forBeta(«, 3) :
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Choice of Prior: Beta Prior

Solving bandits from a Bayesian perspe

Choose a prior for the mean reward of each arm.
At each time step,

1. Sample a particular set of parameters from the prior.
2. Select arm i(t) = arg max; reward; | parameters

3. Observe reward and update posterior.
e Beta(a, 3) is a family of continuous distributions defined on [0, 1].

Probability density function forBeta(«, 3) :
on—l(l _ X)ﬂ—l
fol u=1(1 — u)P-1du

f(x,a,B) =

e Beta(1,1) = uniform distribution on [0, 1].



Updating Posterior: Bernoulli Rewards using Beta Prior

Solving bandits from a Bayesian perspective

Choose a prior for the mean reward of each arm.
At each time step,

1. Sample a particular set of parameters from the prior.
2. Select arm i(t) = arg max; reward | parameters

3. Observe reward and update posterior.
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Solving bandits from a Bayesian perspe

Choose a prior for the mean reward of each arm.
At each time step,

1. Sample a particular set of parameters from the prior.
2. Select arm i(t) = arg max; reward | parameters

3. Observe reward and update posterior.

e For Bernoulli rewards (i.e. rewards either 0 or 1), interpret
Beta(a, 3) parameters as follows :
e «a — 1 as the number of previous 1’s and
e 3 —1 as the number of previous 0's.
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Updating Posterior: Bernoulli Rewards using Beta Prior

Solving bandits from a Bayesian perspe

Choose a prior for the mean reward of each arm.
At each time step,

1. Sample a particular set of parameters from the prior.
2. Select arm i(t) = arg max; reward | parameters

3. Observe reward and update posterior.

e For Bernoulli rewards (i.e. rewards either 0 or 1), interpret
Beta(a, 3) parameters as follows :
e «a — 1 as the number of previous 1’s and
e 3 —1 as the number of previous 0's.
e After observing a Bernoulli reward,
if the reward is 1,
then the posterior distribution is Beta(a + 1, 3)
if the reward is 0,
then the posterior distribution is Beta(«, 5 + 1).

Why Beta prior? Because Beta is the conjugate prior for Bernoulli distribution. For more

information, click here.


https://towardsdatascience.com/conjugate-prior-explained-75957dc80bfb

Thompson Sampling



Thompson Sampling algorithm

Algorithm Thompson sampling with Beta prior for Bernoulli rewards
1: fori=1,...,K do

2: Initialize Success; = 0 and Failure; = 0
3: end for

4. fort=1,..., T do

5: fori=1,...,K do

6: Sample 6;(t) ~ Beta(Success; + 1, Failure; + 1)
7 end for

8 Select arm i(t) = arg max; 0;(t).

9: Observe reward r(t).

10: if r(t) =1 then

11: Success;(;) = Success;(y) + 1

12: else

13: Failure,-(t) = Failure,-(t) +1

14: end if

15: end for

10
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Algorithm Thompson sampling with Beta prior for Bernoulli rewards

8: Select arm i(t) = arg max; 0;(t).
9: Observe reward r(t).
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Algorithm Thompson sampling with Beta prior for Bernoulli rewards

8: Select arm i(t) = arg max; 0;(t).
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Why does Thompson Sampling work?

e Arm selection: Select arm i(t) = arg max; 0;(t).

e Exploration via randomization
0;(t) ~ Beta(Success; + 1, Failure; + 1)

e Initially the posterior might be poorly concentrated, then the
fluctuations in @'s are likely to be large and TS will explore.

M
2828

e After a large number of observations, the posterior concentrates
around the true mean and the rate of exploration decreases.

11




Regret Bound for Thompson
Sampling



Regret Bound for Thompson Sampling

Theorem (Theorem 1 from Agrawal and Goyal [2013])

After T time steps, the expected cumulative regret of Thompson
sampling using Beta priors is

Regret = R(T) < (1+€)2Z loiTA,- +0 (K) ,

€2

where c is a problem-dependent constant.



Proving the Regret Bound: Preliminaries |

e True mean reward of arm i is y;.

e By default, 1 is the optimal arm i.e. u; is the optimal mean.
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e True mean reward of arm i is y;.

e By default, 1 is the optimal arm i.e. u; is the optimal mean.
e Arm being played at time t = i(t).
t
e N;(t):= Number of times arm i is played till t = > I(i(7) = /).
=il
t
e Empirical mean of arm i at t = [;(t) == Nvl(t) S (r(n)]i(r) = i).
! =1
e Sampled parameter of arm i = 6,(t).
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Proving the Regret Bound: Preliminaries Il

Recall from the last lecture

Regret = R(T) = Z A E[N;(T)).
i=1,...,K,0;>0

e Suboptimality gap A;:= . — i where p, is the optimal mean
reward and p; is the mean reward for arm a.

° := Number of times arm i is played till T =
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Proving the Regret Bound: Preliminaries Il

Recall from the last lecture

Regret = R(T) = Z AE[IN(T).
i=1,...,K,A;>0

e Suboptimality gap A;:= . — i where p, is the optimal mean
reward and p; is the mean reward for arm a.

° := Number of times arm i is played till T =

e In order to bound R(T), we need to bound E[N;(T)].

14
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When does Thompson Sampling Perform Well? |

Arm selection rule of Thompson sampling

Select arm i(t) = arg max; 0;(t).

At time=0 9;1 e‘i'

e Initially, all #'s are from the same distribution Beta(1,1) (i.e., the
uniform distribution on [0, 1]), so not yet! @
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When does Thompson Sampling Perform Well? II

Arm selection rule of Thompson sampling

Select arm i(t) = arg max; 0;(t).

At time=t 0'{ Bli' :
f

e At t, 0's are too far from u's, so not yet! @
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When does Thompson Sampling Perform Well? IlI

Arm selection rule of Thompson sampling

Select arm i(t) = arg max; 0;(t).

A —) ’ !
At time=t ‘ 9/1 9|1

0 | | 1
Hi M1

& 3%

e At t/, when 's are close u's. ©



We start again after a break.
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When does Thompson Sampling Perform Well?

Arm selection rule of Thompson sampling

Select arm i(t) = arg max; 0;(t).

A —) ’ !
At time=t ‘ 9/1 9|1

0 | | 1
Hi M1

& 3%

e At t/, when 's are close u's. ©



Proving the Regret Bound: Defining the Good Events

0 I I 1
Hi Ha

& A

e EY(t):= sampled parameter 0; is close to ;.

e E!'(t):= estimated mean fi; is close to y;.

20



Proving the Regret Bound: Defining the Good Events

fi; X Yi

Hi ' M1

e For each suboptimal arm /, let x; and y; be two thresholds such that
pi <X <y < p.

e EY(t):= sampled parameter 0; is close to y;,
EP(t)={0; < v} -

e E!(t):= estimated mean fi; is close to y;,
Ef () ={fi < xi} -

20



Proving the Regret Bound: Decomposition into Three Terms

By Xi Vi

=

Hi " My
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Proving the Regret Bound: Decomposition into Three Terms

By Xi }’Ii 1
0 N
Hi ' M1
T
E[N(T)] =Y _P(i(t) = i)
t;l
ZIP’(i(t):/ EX(t) Ee(t))
+> P (i) = i, JEF@)] EV ()
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Proving the Regret Bound: Analyzing the First Term |

T -
EN;(T) =[P (i(t) =i, EX) , 9 () ) +ol P (f(t) =i, | E*(e) ,Eﬁ(t)) +Tl P (f(t) =i, El.p‘(t))

t=1
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T -
EN;(T) =[P (i(t) =i, EX) , 9 () ) +ol P (f(t) =i, | E*(e) ,Eﬁ(t)) +Tl P (f(t) =i, El.p‘(t))

t=1

o Let “history” Fo_1 = i(1), (1), i(2), r(2),...,i(t — 1), r(t — 1).
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Proving the Regret Bound: Analyzing the First Term |

T -
E[N;(T)] = [ 3D P (i(t) =i E(@) & 7 () ) +xl P (f(t) =i, NEEN. Eﬁ(z)) +xl P (r'(t) =i, E’.“(t)>
=il

e Let “history” Fi_1 = i(1),r(1),i(2),r(2),...,i(t —1),r(t —1).

Lemma (Main Lemma. Lemma 1 from Agrawal and Goyal [2013])

Forallt=1,..., T and all suboptimal arms i i.e. i # 1,

P (i(t) = i, [Ef(e) | EP(e) | Fen)

< Coefficiento]P’(i(t) =1, E*(t), EP(t) |]-‘t_1>

Hi ' M1
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Proving the Regret Bound: Analyzing the First Term |

T =
E[N;(T)] = [ 3D P <i(t) =i E(@) & 7 () > +xl P (/‘(t) =i, | Ef(e) ,Eﬁ(z)) +xl P (/‘(t) =i, E’.“(t))
=il

e Let “history” Fi_1 = i(1),r(1),i(2),r(2),...,i(t —1),r(t —1).

Lemma (Main Lemma. Lemma 1 from Agrawal and Goyal [2013])

Forallt=1,..., T and all suboptimal arms i i.e. i # 1,

P (i() = i, [Ef(E) . E() | Fon)

(1- pi,t) i(t) = 3 0
< =B (i) = 1 B E(0) | )

where p; ; = ]P’(- | Feo1)

J | 1

Hi Ha




Proving the Regret Bound: Analyzing the First Term Il

T =
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Probability of playing the best arm in the "good” case
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T =
E[N;(T)] = [ 3D P <i(t) =i E(@) & 7 () > +xl P (/‘(t) =i, | Ef(e) ,Eﬁ(z)) +>l P (/‘(t) =i, E’.“(t))
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First term < > E (1;””)- IP’(i(t) = 1. EA(t) . EV(t) |fH)
it

Coefficient

o= (R ) I

t=1

Probability of playing the best arm in the "good” case

=
s
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T -
E[N;(T)] = [ 3D P <i(t) =i E(@) & 7 () > +xl P (/‘(t) =i, | Ef(e) ,Eﬁ(z)) +>l P (/‘(t) =i, E’.“(t))

.
First term < ZE w P (i(f) =1, [ E?(t) |-7:t71)

il Pi,t
@ s Probability of playing the best arm in the "good” case
x;
pi.c-= P 7)== 1
Hi (i
a A3

Coefficient decreases exponentially fast with samples of the optimal arm Ny(t).

23
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Proving the Regret Bound: Analyzing the First Term Il

T -
E[N;(T)] = [ 3D P <i(t) =i E(@) & 7 () > +xl P (/‘(t) =i, | Ef(e) ,Eﬁ(z)) +>l P (/‘(t) =i, E’.“(t))

.
First term < ZE w P (i(f) =1, [ E?(t) |-7:t71)

il Pi,t
@ s Probability of playing the best arm in the "good” case
x;
pi.c-= P 7)== 1
Hi (i
a A3

Coefficient decreases exponentially fast with samples of the optimal arm Ny(t).
T

The term Z]P’(i(t) =i, [Ef'(t) , E’(t) ) contributes a constant O(1).
t=1

A primer on big-oh notation O() 23
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Proving the Regret Bound: Analyzing the Second Term |

T I
EN(T)] = =), P (f(t) =i, NEEN =40) ) + P (i(t) =1 Z"(e) -) +xl P (r'(t) =i Eﬁ(z))

t=1

Xi Vi
I | ,

| 1

—_—
Hi 9

a %
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Proving the Regret Bound: Analyzing the Second Term I

T -
EN(T)] = =), P (;(:) =i, NEEN =40) ) + P (i(t) =1 Z"(e) -) +xl P (/‘(t) =i Eﬁ(:))

t=1

Xi Vi
I | ,

| 1

4

0 l
Hi

a %

Proof sketch.

8 —>

e Given that [Ef'(£) holds, i.e. fi; < x;, the algorithm can only sample
- before the posterior concentrates around its mean.
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T -
EN(T)] = =), P (;(:) =i, NEEN =40) ) + P (i(t) =1 Z"(e) -) +xl P (/‘(t) =i Eﬁ(:))

t=1

Xi Vi
I | ,

| 1

4

0 l
Hi

a %

Proof sketch.

8 —>

e Given that [Ef'(£) holds, i.e. fi; < x;, the algorithm can only sample
- before the posterior concentrates around its mean.

e Posterior is well-concentrated around its mean when N;(t) > dl((’f_;_),
Xi 1— Xi
d(xi, i) = xilog — + (1 — x;) log
Yi 1—vyi
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Proving the Regret Bound: Analyzing the Second Term I

T .
EN(T)] = =), P (;(:) =i, JEEN, =40) ) +O0P (i(t) =i, EM@) -) +> P (/‘(t) =i, Eﬁ(:))

t=1

Xi Vi

I I ,

4

0 l
Hi

1
Proof sketch.
e Given that [Ef'(£) holds, i.e. fi; < x;, the algorithm can only sample
- before the posterior concentrates around its mean.

e Posterior is well-concentrated around its mean when N;(t) > d'f’f__;_),
Xi 1— X
d(xi,yi) =xilog — + (1 — x;) log
Yi L—yi

o After that, P([JHD i P(.) <

==

24



Proving the Regret Bound: Analyzing the Second Term Il

T -
BN(T)] =S, P (fm:f, EFm . EP () ) + ZP(fm:i, EF (1) f{’(r)) +3Lp (i) = i, EF ()
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Proving the Regret Bound: Analyzing the Third Term
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Proving the Regret Bound: Putting Everything Together

i

EN(T)] = ), P (;(z) =i, Erw | EL ) ) +l, P (f(z) =i, NESEN. Eﬁ(z)) +>l P (;(z) = El.“(t))
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Proving the Regret Bound: Putting Everything Together
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Proving the Regret Bound: Final Step

Expected cumulative regret after T time steps is

= ZA,'E[/V/(T)]
log T K
Z d( % __Ai+0 (62) O

/’Lhul
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Distribution-free Regret Bound for Thompson Sampling

Theorem (Theorem 2 from Agrawal and Goyal [2013])

After T time steps, the expected cumulative regret of Thompson
sampling using Beta priors is

Regret = R(T) < O(\/KT log(T))

29



e Solving Bandits using a Bayesian Perspective.
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e Proof for the Regret Bound.
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Extra Material

e For more insights into Thompson Sampling, watch this video (till
minute 32).

e Some resources on frequentist and Bayesian perspective : Stanford
Encyclopedia of Philosophy articles - Interpretations of Probability

by Alan Héjek, and Philosophy of Statistics by Jan-Willem Romeijn,

a StackExchange question.

e For the purpose of producing useful and self-consistent results, any
frequentist interpretation can generally be given a Bayesian
interpretation, and vice versa.
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https://www.youtube.com/watch?v=o6HBIGzQfJs
https://www.youtube.com/watch?v=o6HBIGzQfJs
https://plato.stanford.edu/entries/probability-interpret/
https://plato.stanford.edu/entries/statistics/
https://stats.stackexchange.com/questions/31867/bayesian-vs-frequentist-interpretations-of-probability?noredirect=1&lq=1

Next lecture

Non-stationary Stochastic Bandits.

Adversarial Bandits.

Dueling Bandits (and a lower bound).

e Contextual Bandits.
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Main Lemma

e Conditioned on any history, P(playing any suboptimal arm at t) <
linear function of P(playing the optimal arm at t).

Lemma (Lemma 1 from Agrawal and Goyal [2013])

Forallt=1,..., T and all suboptimal arms i i.e. i # 1,

P (i(t) = i, EF(e)., E'(e) | Fon)

(1 _Pi,t) . _ "
< 20 (i) = 1, 600 [EFCE) | )

where p; ¢ ‘= ]P’(- | Feo1)

] |A ¥1
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