Lecture 2 - Upper Confidence Bound Algorithm for Bandits

Pratik Gajane

September 12, 2022

2AMM20 Research Topics in Data Mining Eindhoven University of Technology

A Quick Recap of Lecture 1

- Introduction to reinforcement learning.
- Mathematical formulation of a reinforcement learning problem.
- Formulating RL with multi-armed bandits and its variants.
- Formulating RL with Markov decision processes.

Lecture 2: Outline

- Introduction to Bandits and Mathematical Setting
- Greedy: A Simple Solution (and why it does not work?)
- Acting optimistically: Upper Confidence Bound algorithm.

Introduction

What's in a Name? Why "Bandits"?

A single-armed bandit. One arm \equiv one choice.

What's in a Name? Why "Bandits"?

A single-armed bandit. One arm \equiv one choice.

A multi-armed bandit. $\text{Multiple arms} \equiv \text{multiple choices}.$

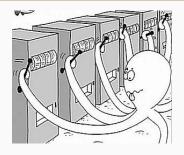
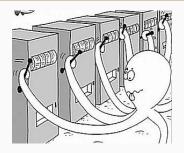
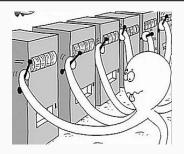


Image source: Microsoft research

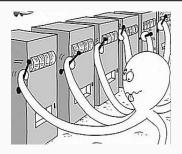
 \bullet Agent faces repeated choice among K different actions/arms.



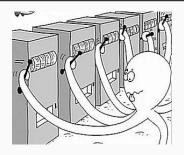
- Agent faces repeated choice among K different actions/arms.
- Agent acts according to some policy π .
- At each time step t, the agent selects an action and then receives a numerical reward for that action.



- Agent faces repeated choice among *K* different actions/arms.
- Agent acts according to some policy π .
- At each time step t, the agent selects an action and then receives a numerical reward for that action. (Bandit feedback).



- Agent faces repeated choice among *K* different actions/arms.
- Agent acts according to some policy π .
- At each time step t, the agent selects an action and then receives a numerical reward for that action. (Bandit feedback).
- Agent learns only through received rewards. No other way to learn.



- Agent faces repeated choice among K different actions/arms.
- Agent acts according to some policy π .
- At each time step t, the agent selects an action and then receives a numerical reward for that action. (Bandit feedback).
- Agent learns only through received rewards. No other way to learn.
- Goal: Maximize the sum of received rewards.

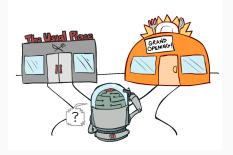


Image source: UC Berkeley AI course, lecture 11

• Exploit. Choose actions tried in the past and found to be rewarding.

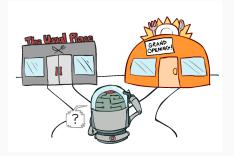


Image source: UC Berkeley AI course, lecture 11

- Exploit. Choose actions tried in the past and found to be rewarding.
- Explore. Choose unexplored actions to see if they are more rewarding.

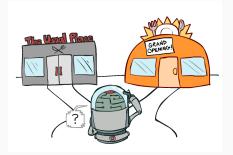


Image source: UC Berkeley AI course, lecture 11

- Exploit. Choose actions tried in the past and found to be rewarding.
- Explore. Choose unexplored actions to see if they are more rewarding.
- Neither exploration nor exploitation can be pursued exclusively.

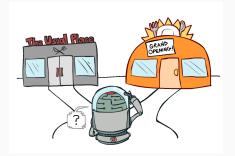


Image source: UC Berkeley AI course, lecture 11

- Exploit. Choose actions tried in the past and found to be rewarding.
- Explore. Choose unexplored actions to see if they are more rewarding.
- Neither exploration nor exploitation can be pursued exclusively.
- A good solution balances exploration and exploitation.

Applications!

- Clinical trials
- Recommendation systems
- Ad placement
- Dynamic pricing
- And many more . . .

Mathematical setting

• Number of arms = K.

- Number of arms = K.
- Reward for arm $a \sim X_a$ with mean μ_a .
- $X_1, X_2, ... X_K$ are unknown stationary distributions.

- Number of arms = K.
- Reward for arm $a \sim X_a$ with mean μ_a .
- $X_1, X_2, \dots X_K$ are unknown stationary distributions.
- At each time step t = 1, ..., T, the agent,
 - acts according to a policy π and chooses an arm a(t), and

- Number of arms = K.
- Reward for arm $a \sim X_a$ with mean μ_a .
- $X_1, X_2, \dots X_K$ are unknown stationary distributions.
- At each time step t = 1, ..., T, the agent,
 - acts according to a policy π and chooses an arm a(t), and
 - receives a numerical reward $r(t) \sim X_{a(t)}$.

- Number of arms = K.
- Reward for arm $a \sim X_a$ with mean μ_a .
- $X_1, X_2, \dots X_K$ are unknown stationary distributions.
- At each time step t = 1, ..., T, the agent,
 - acts according to a policy π and chooses an arm a(t), and
 - receives a numerical reward $r(t) \sim X_{a(t)}$.
- T is called the horizon.

Distributions X_1,\ldots,X_K are unknown to the agent, but we may make some assumptions. E.g.,

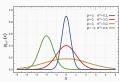
Distributions X_1,\dots,X_K are unknown to the agent, but we may make some assumptions. E.g.,

• X_a is Bernoulli with unknown mean $\mu_a \in [0,1]$.

Distributions X_1,\ldots,X_K are unknown to the agent, but we may make some assumptions. E.g.,

• X_a is Bernoulli with unknown mean $\mu_a \in [0,1]$.

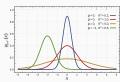
• X_a is Gaussian with unit variance and unknown mean $\mu_a \in \mathbb{R}$.



Distributions X_1, \ldots, X_K are unknown to the agent, but we may make some assumptions. E.g.,

• X_a is Bernoulli with unknown mean $\mu_a \in [0,1]$.

• X_a is Gaussian with unit variance and unknown mean $\mu_a \in \mathbb{R}$.



Which assumption do we make? We will see in due time.

 a_1 , Bernoulli, mean $\mu_1=0.9$

 a_2 , Bernoulli, mean $\mu_2=0.8$

• Number of arms = K = 2.

 a_2 , Bernoulli, mean $\mu_2 = 0.8$

- Number of arms = K = 2.
- Reward for arm $a_1 \sim$ Bernoulli with mean $\mu_1 = 0.9$. Reward for arm $a_2 \sim$ Bernoulli with mean $\mu_2 = 0.8$

 a_2 , Bernoulli, mean $\mu_2 = 0.8$

- Number of arms = K = 2.
- Reward for arm $a_1 \sim$ Bernoulli with mean $\mu_1 = 0.9$. Reward for arm $a_2 \sim$ Bernoulli with mean $\mu_2 = 0.8$
- Agent policy π : Choose arms alternatingly.

 a_2 , Bernoulli, mean $\mu_2 = 0.8$

- Number of arms = K = 2.
- Reward for arm $a_1 \sim$ Bernoulli with mean $\mu_1 = 0.9$. Reward for arm $a_2 \sim$ Bernoulli with mean $\mu_2 = 0.8$
- Agent policy π : Choose arms alternatingly.
- The agent,
 - ullet at $t=1,3,\ldots$, picks arm a_1 , reward $r(t)\sim$ Bernoulli with $\mu_1=0.9$;
 - at $t=2,4,\ldots$, picks arm a_2 , reward $r(t)\sim$ Bernoulli with $\mu_2=0.8$.

- Random variable: A quantity which depends on a random/stochastic process.
 - e.g., outcome of a coin toss, reward drawn from a stochastic distribution.

- Random variable: A quantity which depends on a random/stochastic process.
 e.g., outcome of a coin toss, reward drawn from a stochastic distribution.
- Expectation of a random variable $x = \mathbb{E}[x] := \sum_{i} i \cdot \mathbb{P}(x = i)$.

- Random variable: A quantity which depends on a random/stochastic process.
 e.g., outcome of a coin toss, reward drawn from a stochastic distribution.
- Expectation of a random variable $x = \mathbb{E}[x] := \sum_{i} i \cdot \mathbb{P}(x = i)$.
- Expected value of a random variable is the mean of the related stochastic process.

- Random variable: A quantity which depends on a random/stochastic process.
 e.g., outcome of a coin toss, reward drawn from a stochastic distribution.
- Expectation of a random variable $x = \mathbb{E}[x] := \sum_{i} i \cdot \mathbb{P}(x = i)$.
- Expected value of a random variable is the mean of the related stochastic process.
- Expectation is linear i.e.,

$$\mathbb{E}[x_1 + x_2 + \cdots + x_n] = \mathbb{E}[x_1] + \mathbb{E}[x_2] + \cdots + \mathbb{E}[x_n].$$

- Random variable: A quantity which depends on a random/stochastic process.
 e.g., outcome of a coin toss, reward drawn from a stochastic distribution.
- Expectation of a random variable $x = \mathbb{E}[x] := \sum_{i} i \cdot \mathbb{P}(x = i)$.
- Expected value of a random variable is the mean of the related stochastic process.
- Expectation is linear i.e.,

$$\mathbb{E}[x_1 + x_2 + \cdots + x_n] = \mathbb{E}[x_1] + \mathbb{E}[x_2] + \cdots + \mathbb{E}[x_n].$$

• Indicator function $\mathbb{I}(E) = \begin{cases} 1, & \text{if } E \text{ is true,} \\ 0, & \text{otherwise.} \end{cases}$

- Random variable: A quantity which depends on a random/stochastic process.
 e.g., outcome of a coin toss, reward drawn from a stochastic distribution.
- Expectation of a random variable $x = \mathbb{E}[x] := \sum_{i} i \cdot \mathbb{P}(x = i)$.
- Expected value of a random variable is the mean of the related stochastic process.
- Expectation is linear i.e.,

$$\mathbb{E}[x_1 + x_2 + \cdots + x_n] = \mathbb{E}[x_1] + \mathbb{E}[x_2] + \cdots + \mathbb{E}[x_n].$$

• Indicator function $\mathbb{I}(E) = \begin{cases} 1, & \text{if } E \text{ is true,} \\ 0, & \text{otherwise.} \end{cases}$

e.g., count of occurrences of
$$E = \sum_{t=1}^{T} \mathbb{I}(E)$$
.

Optimal Policy

 a_2 , Bernoulli, mean $\mu_2 = 0.8$

- Goal: Maximize expected cumulative reward.
- Expected cumulative reward of policy π till $T := \mathbb{E}\left[\sum_{t=1}^{T} r(t) \mid \pi\right]$.

Optimal Policy

 a_2 , Bernoulli, mean $\mu_2 = 0.8$

- Goal: Maximize expected cumulative reward.
- Expected cumulative reward of policy π till $T := \mathbb{E}\left[\sum_{t=1}^{T} r(t) \mid \pi\right]$.
- Optimal policy $\pi_* \coloneqq \arg\max_{\pi} \mathbb{E}\left[\sum_{t=1}^T r(t) \mid \pi\right]$.

Optimal Policy

 a_2 , Bernoulli, mean $\mu_2 = 0.8$

- Goal: Maximize expected cumulative reward.
- Expected cumulative reward of policy π till $T := \mathbb{E}\left[\sum_{t=1}^{T} r(t) \mid \pi\right]$.
- Optimal policy $\pi_* \coloneqq \arg\max_{\pi} \mathbb{E}\left[\sum_{t=1}^T r(t) \mid \pi\right]$.
- Policy π_* : Play the optimal arm with mean reward $\mu_* \coloneqq \max_a \mu_a$.

• If the agent acts according to policy π_* at t, then it receives the optimal expected reward $\mu_* := \max_a \mu_a$.

- If the agent acts according to policy π_* at t, then it receives the optimal expected reward $\mu_* := \max_a \mu_a$.
- If the agent acts according to policy π_* from $t=1,\ldots,T$, then it receives the optimal expected cumulative reward $=T\mu_*$.

- If the agent acts according to policy π_* at t, then it receives the optimal expected reward $\mu_* := \max_a \mu_a$.
- If the agent acts according to policy π_* from $t=1,\ldots,T$, then it receives the optimal expected cumulative reward $=T\mu_*$.
- Regret is a measure of the total mistake cost.
 How far is the agent's performance from the optimal performance?

- If the agent acts according to policy π_* at t, then it receives the optimal expected reward $\mu_* := \max_a \mu_a$.
- If the agent acts according to policy π_* from $t=1,\ldots,T$, then it receives the optimal expected cumulative reward $=T\mu_*$.
- Regret is a measure of the total mistake cost.
 How far is the agent's performance from the optimal performance?

• Regret =
$$\mathfrak{R}_{\pi}(T)$$
 := $T\mu_{*}$ - $\mathbb{E}\left[\sum_{t=1}^{T} r(t) \mid \pi\right]$ Expected cumulative reward of π

- If the agent acts according to policy π_* at t, then it receives the optimal expected reward $\mu_* := \max_a \mu_a$.
- If the agent acts according to policy π_* from $t=1,\ldots,T$, then it receives the optimal expected cumulative reward $=T\mu_*$.
- Regret is a measure of the total mistake cost.
 How far is the agent's performance from the optimal performance?

• Regret =
$$\mathfrak{R}_{\pi}(T)$$
 := $T\mu_{*}$ - $\mathbb{E}\left[\sum_{t=1}^{T} r(t) \mid \pi\right]$ Expected cumulative reward of π

Minimizing regret

Maximizing expected cumulative reward.

Suboptimality gap $\Delta_a := \mu_* - \mu_a$

Suboptimality gap $\Delta_a := \mu_* - \mu_a$

 $N_a(T) :=$ Number of times arm a is played till T

Suboptimality gap $\Delta_a := \mu_* - \mu_a$

$$N_a(T) :=$$
 Number of times arm a is played till T
$$= \sum_{t=1}^T \mathbb{I}(a(t) = a) \qquad \text{where } a(t) \text{ is the arm selected at time } t.$$

Suboptimality gap
$$\Delta_a := \mu_* - \mu_a$$

$$N_a(T) :=$$
 Number of times arm a is played till T
$$= \sum_{t=1}^T \mathbb{I}(a(t) = a) \qquad \text{where } a(t) \text{ is the arm selected at time } t.$$

$$\textit{Regret} = \mathfrak{R}(\textit{T}) = \sum_{\textit{a}=1}^{\textit{K}} \Delta_{\textit{a}} \, \mathbb{E}[\textit{N}_{\textit{a}}(\textit{T})].$$

$$\textit{Regret} = \mathfrak{R}(\textit{T}) = \sum_{\textit{a}=1}^{\textit{K}} \Delta_{\textit{a}} \, \mathbb{E}[\textit{N}_{\textit{a}}(\textit{T})].$$

Regret =
$$\mathfrak{R}(T) = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$$

$$\mathfrak{R}(T) = T\mu_* - \mathbb{E}\left[\sum_{t=1}^T r(t)\right]$$

Regret =
$$\mathfrak{R}(T) = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$$

$$\mathfrak{R}(T) = T\mu_* - \mathbb{E}\left[\sum_{t=1}^T r(t)\right] = \sum_{t=1}^T \mu_* - \mathbb{E}\left[\sum_{t=1}^T r(t)\right]$$

Regret =
$$\mathfrak{R}(T) = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$$

$$\mathfrak{R}(T) = T\mu_* - \mathbb{E}\left[\sum_{t=1}^T r(t)\right] = \sum_{t=1}^T \mu_* - \mathbb{E}\left[\sum_{t=1}^T r(t)\right]$$
$$= \mathbb{E}\left[\sum_{t=1}^T [\mu_* - r(t)]\right]$$

Regret =
$$\mathfrak{R}(T) = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$$

$$\mathfrak{R}(T) = T\mu_* - \mathbb{E}\left[\sum_{t=1}^T r(t)\right] = \sum_{t=1}^T \mu_* - \mathbb{E}\left[\sum_{t=1}^T r(t)\right]$$
$$= \mathbb{E}\left[\sum_{t=1}^T [\mu_* - r(t)]\right] = \mathbb{E}\left[\sum_{t=1}^T \Delta_{a(t)}\right]$$

Regret =
$$\mathfrak{R}(T) = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$$

$$\mathfrak{R}(T) = T\mu_* - \mathbb{E}\left[\sum_{t=1}^T r(t)\right] = \sum_{t=1}^T \mu_* - \mathbb{E}\left[\sum_{t=1}^T r(t)\right]$$
$$= \mathbb{E}\left[\sum_{t=1}^T [\mu_* - r(t)]\right] = \mathbb{E}\left[\sum_{t=1}^T \Delta_{a(t)}\right]$$
$$= \mathbb{E}\left[\sum_{t=1}^T \sum_{a=1}^K \mathbb{I}(a(t) = a)\Delta_a\right]$$

Regret =
$$\mathfrak{R}(T) = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$$

$$\mathfrak{R}(T) = T\mu_* - \mathbb{E}\left[\sum_{t=1}^T r(t)\right] = \sum_{t=1}^T \mu_* - \mathbb{E}\left[\sum_{t=1}^T r(t)\right]$$
$$= \mathbb{E}\left[\sum_{t=1}^T [\mu_* - r(t)]\right] = \mathbb{E}\left[\sum_{t=1}^T \Delta_{a(t)}\right]$$
$$= \mathbb{E}\left[\sum_{t=1}^T \sum_{s=1}^K \mathbb{I}(a(t) = s)\Delta_s\right] = \mathbb{E}\left[\sum_{s=1}^K \Delta_s \sum_{t=1}^T \mathbb{I}(a(t) = s)\right]$$

Regret =
$$\mathfrak{R}(T) = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$$

$$\mathfrak{R}(T) = T\mu_* - \mathbb{E}\left[\sum_{t=1}^T r(t)\right] = \sum_{t=1}^T \mu_* - \mathbb{E}\left[\sum_{t=1}^T r(t)\right]$$

$$= \mathbb{E}\left[\sum_{t=1}^T [\mu_* - r(t)]\right] = \mathbb{E}\left[\sum_{t=1}^T \Delta_{a(t)}\right]$$

$$= \mathbb{E}\left[\sum_{t=1}^T \sum_{a=1}^K \mathbb{I}(a(t) = a)\Delta_a\right] = \mathbb{E}\left[\sum_{a=1}^K \Delta_a \sum_{t=1}^T \mathbb{I}(a(t) = a)\right]$$

$$= \mathbb{E}\left[\sum_{a=1}^K \Delta_a N_a(T)\right]$$

Regret =
$$\mathfrak{R}(T) = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$$

$$\mathfrak{R}(T) = T\mu_* - \mathbb{E}\left[\sum_{t=1}^T r(t)\right] = \sum_{t=1}^T \mu_* - \mathbb{E}\left[\sum_{t=1}^T r(t)\right]$$

$$= \mathbb{E}\left[\sum_{t=1}^T [\mu_* - r(t)]\right] = \mathbb{E}\left[\sum_{t=1}^T \Delta_{a(t)}\right]$$

$$= \mathbb{E}\left[\sum_{t=1}^T \sum_{a=1}^K \mathbb{I}(a(t) = a)\Delta_a\right] = \mathbb{E}\left[\sum_{a=1}^K \Delta_a \sum_{t=1}^T \mathbb{I}(a(t) = a)\right]$$

$$= \mathbb{E}\left[\sum_{a=1}^K \Delta_a N_a(T)\right] = \sum_{a=1}^K \Delta_a \mathbb{E}[N_a(T)].$$

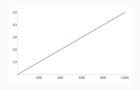
ullet Two arms with Bernoulli rewards, $\mu_1=0.9$ and $\mu_2=0.8$.

- Two arms with Bernoulli rewards, $\mu_1 = 0.9$ and $\mu_2 = 0.8$.
- Policy π : Play each arm with probability 0.5.

- Two arms with Bernoulli rewards, $\mu_1 = 0.9$ and $\mu_2 = 0.8$.
- Policy π : Play each arm with probability 0.5.

Regret of
$$\pi = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)]$$

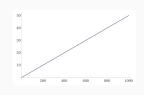
= $(0.9 - 0.9)\frac{T}{2} + (0.9 - 0.8)\frac{T}{2}$
= $0.05T$ (linear regret!).



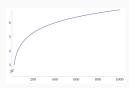
- Two arms with Bernoulli rewards, $\mu_1 = 0.9$ and $\mu_2 = 0.8$.
- Policy π : Play each arm with probability 0.5.

Regret of
$$\pi = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)]$$

= $(0.9 - 0.9)\frac{T}{2} + (0.9 - 0.8)\frac{T}{2}$
= $0.05T$ (linear regret!).



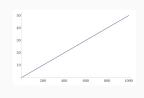
• A policy with sub-linear regret is said to be learning.



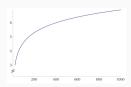
- Two arms with Bernoulli rewards, $\mu_1 = 0.9$ and $\mu_2 = 0.8$.
- Policy π : Play each arm with probability 0.5.

Regret of
$$\pi = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)]$$

= $(0.9 - 0.9)\frac{T}{2} + (0.9 - 0.8)\frac{T}{2}$
= $0.05T$ (linear regret!).



- A policy with sub-linear regret is said to be learning.
- Goal: Construct an algorithm with sub-linear regret.



Solutions

- Suboptimality gap $\Delta_a := \mu_* \mu_a$.
- $N_a(T) := \text{Number of times arm } a \text{ is played till } T = \sum_{t=1}^{I} \mathbb{I}(a(t) = a).$

• Regret
$$\mathfrak{R}(T) = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$$

- Suboptimality gap $\Delta_a := \mu_* \mu_a$.
- $N_a(T) := \text{Number of times arm } a \text{ is played till } T = \sum_{t=1}^{T} \mathbb{I}(a(t) = a).$
- Regret $\mathfrak{R}(T) = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$
- For large gaps Δ_a , keep count $N_a(T)$ small.

- Suboptimality gap $\Delta_a := \mu_* \mu_a$.
- $N_a(T) := \text{Number of times arm } a \text{ is played till } T = \sum_{t=1}^{T} \mathbb{I}(a(t) = a).$
- Regret $\mathfrak{R}(T) = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$
- For large gaps Δ_a , keep count $N_a(T)$ small.
- If mean reward μ 's are known, simply pick the arm with $\mu_* = \arg\max_a \mu_a$. But they are unknown. So, build an estimate $\hat{\mu}$.

- Suboptimality gap $\Delta_a := \mu_* \mu_a$.
- $N_a(T) := \text{Number of times arm } a \text{ is played till } T = \sum_{t=1}^{T} \mathbb{I}(a(t) = a).$
- Regret $\mathfrak{R}(T) = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)].$
- For large gaps Δ_a , keep count $N_a(T)$ small.
- If mean reward μ 's are known, simply pick the arm with $\mu_* = \arg\max_a \mu_a$. But they are unknown. So, build an estimate $\hat{\mu}$.
- $\hat{\mu}_a(t)$ = Empirical mean of arm a at time t = Average of the received rewards from arm a till t = $\frac{1}{N_a(t)}\sum_{\tau=1}^t (r(\tau)|a(\tau)=a)$.

Greedy Algorithm

Greedy: Choose each action once.

Then choose the action with the highest empirical mean.

Greedy Algorithm

Greedy: Choose each action once.

Then choose the action with the highest empirical mean.

Algorithm Greedy algorithm

```
1: for t = 1, ..., K do
```

2: Choose each arm once.

3: end for

4: **for** $t = K + 1, \dots$ **do**

5: Compute empirical means $\hat{\mu}_1(t-1),\ldots,\hat{\mu}_{\mathcal{K}}(t-1)$.

6: Select arm $a(t) = \arg\max_{a} \hat{\mu}_{a}(t-1)$.

7: end for

Greedy Algorithm

Greedy: Choose each action once.

Then choose the action with the highest empirical mean.

Algorithm Greedy algorithm

- 1: **for** t = 1, ..., K **do**
- 2: Choose each arm once.
- 3: end for
- 4: **for** $t = K + 1, \dots$ **do**
- 5: Compute empirical means $\hat{\mu}_1(t-1),\ldots,\hat{\mu}_K(t-1)$.
- 6: Select arm $a(t) = \arg\max_{a} \hat{\mu}_{a}(t-1)$.
- 7: end for

Greedy algorithm has linear regret!

Why Does Greedy Fail?

Arm selection in greedy

Select arm
$$a(t) = \arg \max_{a} \hat{\mu}_{a}(t-1)$$
.

Not much exploration!
 Explores once and then always makes the greedy choice.

Why Does Greedy Fail?

Arm selection in greedy

Select arm $a(t) = \arg \max_{a} \hat{\mu}_{a}(t-1)$.

- Not much exploration!
 Explores once and then always makes the greedy choice.
- It can get stuck with a sub-optimal arm.

Why Does Greedy Fail?

Arm selection in greedy

Select arm $a(t) = \arg \max_{a} \hat{\mu}_{a}(t-1)$.

- Not much exploration!
 Explores once and then always makes the greedy choice.
- It can get stuck with a sub-optimal arm.
- When?
 - the initial $\hat{\mu}$ of a sub-optimal arm is high, or
 - ullet the initial $\hat{\mu}$ of the optimal arm is low.

Adding Exploration to Greedy

 $\epsilon\textsc{-}\mbox{Greedy}$: With probability $1-\epsilon,$ choose the action with the highest empirical mean, and with probability $\epsilon,$ choose a random action.

Adding Exploration to Greedy

```
\epsilon-Greedy: With probability 1-\epsilon, choose the action with the highest empirical mean, and with probability \epsilon, choose a random action.
```

Algorithm ϵ -Greedy algorithm

```
1: for t=1,\ldots,K do
2: Choose each arm once.
3: end for
4: for t=K+1,\ldots do
5: Compute empirical means \hat{\mu}_1(t-1),\ldots,\hat{\mu}_K(t-1).
6: With probability 1-\epsilon,
7: select arm a(t)=\arg\max_a\hat{\mu}_a(t-1).
8: With probability \epsilon,
9: select a random arm.
10: end for
```

Adding Exploration to Greedy

```
\epsilon-Greedy: With probability 1-\epsilon, choose the action with the highest empirical mean, and with probability \epsilon, choose a random action.
```

Algorithm ϵ -Greedy algorithm

```
1: for t=1,\ldots,K do
2: Choose each arm once.
3: end for
4: for t=K+1,\ldots do
5: Compute empirical means \hat{\mu}_1(t-1),\ldots,\hat{\mu}_K(t-1).
6: With probability 1-\epsilon,
7: select arm a(t)=\arg\max_a\hat{\mu}_a(t-1).
8: With probability \epsilon,
9: select a random arm.
10: end for
```

 ϵ -Greedy algorithm has linear regret!

Why Does ϵ -Greedy Fail?

Arm selection in $\epsilon\text{-}\mathsf{Greedy}$

```
With probability 1-\epsilon, select arm a(t)=\arg\max_{a}\hat{\mu}_{a}(t-1). With probability \epsilon, select a random arm.
```

Why Does ϵ -Greedy Fail?

Arm selection in ϵ -Greedy

```
With probability 1-\epsilon, select arm a(t)=\arg\max_a \hat{\mu}_a(t-1). With probability \epsilon, select a random arm.
```

- It explores forever.
- ullet Constant ϵ ensures expected regret of at least

$$\sum_{a=1}^{K} \frac{\epsilon}{K} \Delta_a$$

at each time step.

Why Does ϵ -Greedy Fail?

Arm selection in ϵ -Greedy

With probability $1-\epsilon$, select arm $a(t)=\arg\max_a \hat{\mu}_a(t-1)$. With probability ϵ , select a random arm.

- It explores forever.
- ullet Constant ϵ ensures expected regret of at least

$$\sum_{a=1}^K \frac{\epsilon}{K} \Delta_a$$

at each time step.

• Leading to expected cumulative regret of at least $\left(\frac{\epsilon}{K}\sum_{a=1}^{K}\Delta_{a}\right)T$.

• At time step t, explore with ϵ_t . A decay schedule for $\epsilon_1, \epsilon_2, \ldots$

- At time step t, explore with ϵ_t . A decay schedule for $\epsilon_1, \epsilon_2, \ldots$
- A schedule that has logarithmic regret : 😊

$$c > 0$$

$$d = \min_{a, \Delta_a > 0} \Delta_a$$

$$\epsilon_t = \min \left\{ 1, \frac{cK}{d^2t} \right\}$$

- At time step t, explore with ϵ_t . A decay schedule for $\epsilon_1, \epsilon_2, \ldots$
- A schedule that has logarithmic regret: \odot

$$c > 0$$

$$d = \min_{a, \Delta_a > 0} \Delta_a$$

$$\epsilon_t = \min \left\{ 1, \frac{cK}{d^2t} \right\}$$

ullet Requires advance knowledge of gaps Δ

- At time step t, explore with ϵ_t . A decay schedule for $\epsilon_1, \epsilon_2, \ldots$
- A schedule that has logarithmic regret:

$$c > 0$$

$$d = \min_{a, \Delta_a > 0} \Delta_a$$

$$\epsilon_t = \min \left\{ 1, \frac{cK}{d^2t} \right\}$$

- Requires advance knowledge of gaps Δ
- Can we achieve sub-linear regret without such knowledge?

Break

We start again after a break.

Before the break

- Goal: Find algorithms with sub-linear regret.
- Greedy: Linear regret 🖲
- ϵ -greedy: Linear regret Θ
- Decaying ε-greedy: Logarithmic regret, but requires advance knowledge of gaps Δ
- Can we achieve sub-linear regret without such knowledge?

Optimism Principle

Optimism Principle informally

"You should act as if you are in the best plausible world."

Image source: UC Berkelev AI course, lecture 11

Shall we try the new place?

Optimist: Yes!!!

Pessimist: No!!!

Optimism Principle informally

"You should act as if you are in the best plausible world."

Image source: UC Berkeley AI course, lecture 11

Shall we try the new place?

Optimist: Yes!!! Pessimist: No!!!

Optimism guarantees either optimality or exploration.

• Optimistic estimate of an arm = 'Largest value it could plausibly be'.

- Optimistic estimate of an arm = 'Largest value it could plausibly be'.
- 'Plausible'. The true mean cannot be *much larger* than the empirical mean.

- Optimistic estimate of an arm = 'Largest value it could plausibly be'.
- 'Plausible'. The true mean cannot be much larger than the empirical mean.
- ullet Optimistic estimate of arm $a=\hat{\mu}_{a}(t-1)+$ optimism term

Optimistic arm selection

Select arm $a(t) = \arg\max_a [\hat{\mu}_a(t-1) + \text{optimism term}].$

- Optimistic estimate of an arm = 'Largest value it could plausibly be'.
- 'Plausible'. The true mean cannot be much larger than the empirical mean.
- Optimistic estimate of arm $a=\hat{\mu}_a(t-1)+$ optimism term Similar to greedy, just with an addition of optimism term

Greedy arm selection

Select arm $a(t) = \arg \max_a [\hat{\mu}_a(t-1)].$

- Optimistic estimate of an arm = 'Largest value it could plausibly be'.
- 'Plausible'. The true mean cannot be much larger than the empirical mean.
- ullet Optimistic estimate of arm $a=\hat{\mu}_{a}(t-1)+$ optimism term

Optimistic arm selection

Select arm $a(t) = \arg\max_{a} [\hat{\mu}_{a}(t-1) + \text{optimism term}].$

A Crash Course in Concentration

of Measure

Concentration of Random Variables

Let Z_1, Z_2, \ldots, Z_n be a sequence of of independent and identically distributed random variables with mean $\mu \in \mathbb{R}$ and variance $\sigma^2 < \infty$.

Empirical mean
$$\hat{\mu}_n = \frac{1}{n} \sum_{t=1}^n Z_t$$
.

How close is $\hat{\mu}_n$ to μ ?

Concentration of Random Variables

Let Z_1, Z_2, \ldots, Z_n be a sequence of of independent and identically distributed random variables with mean $\mu \in \mathbb{R}$ and variance $\sigma^2 < \infty$.

Empirical mean
$$\hat{\mu}_n = \frac{1}{n} \sum_{t=1}^n Z_t$$
.

How close is $\hat{\mu}_n$ to μ ?

We could use law of large numbers

$$\lim_{n\to\infty}\hat{\mu}_n=\mu$$

Concentration of Random Variables

Let Z_1, Z_2, \ldots, Z_n be a sequence of of independent and identically distributed random variables with mean $\mu \in \mathbb{R}$ and variance $\sigma^2 < \infty$.

Empirical mean
$$\hat{\mu}_n = \frac{1}{n} \sum_{t=1}^n Z_t$$
.

How close is $\hat{\mu}_n$ to μ ?

We could use law of large numbers

$$\lim_{n\to\infty}\hat{\mu}_n=\mu$$

Law of large numbers requires $n \to \infty$.

Markov's inequality

If Z is a non-negative random variable and c > 0,

$$\mathbb{P}(Z \geq c) \leq \frac{\mathbb{E}[Z]}{c}.$$

Markov's inequality

If Z is a non-negative random variable and c > 0,

$$\mathbb{P}(Z \geq c) \leq \frac{\mathbb{E}[Z]}{c}.$$

Subgaussian

Z is σ^2 -subgaussian i.e. for all $\lambda \in \mathbb{R}$

$$\mathbb{E}[\exp(\lambda Z)] \le \exp\left(\frac{\lambda^2 \sigma^2}{2}\right)$$

Markov's inequality

If Z is a non-negative random variable and c > 0,

$$\mathbb{P}(Z \geq c) \leq \frac{\mathbb{E}[Z]}{c}.$$

Subgaussian

Z is σ^2 -subgaussian i.e. for all $\lambda \in \mathbb{R}$

$$\mathbb{E}[\exp(\lambda Z)] \le \exp\left(\frac{\lambda^2 \sigma^2}{2}\right)$$

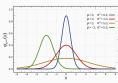
Which distributions are σ -subgaussian? Gaussian, Bernoulli

Recall: Distributional assumptions

Distributions X_1, \ldots, X_K are unknown, we may make some assumptions:

• Bernoulli with unknown mean $\mu_a \in [0, 1]$.

• Gaussian with unit variance unknown mean $\mu_a \in \mathbb{R}$.



Sub-Gaussian with unit variance.

Markov's inequality

If Z is a non-negative random variable and c > 0,

$$\mathbb{P}(Z \ge c) \le \frac{\mathbb{E}[Z]}{c}$$

Z is sub-Gaussian with $\sigma^2 = 1$.

Subgaussian

Z is σ^2 -subgaussian i.e. for all $\lambda \in \mathbb{R}$

$$\mathbb{E}[\exp(\lambda Z)] \le \exp\left(\frac{\lambda^2 \sigma^2}{2}\right)$$

Which distributions are σ -subgaussian? Gaussian, Bernoulli

Markov's inequality

If Z is a non-negative random variable and c > 0,

$$\mathbb{P}(Z \geq c) \leq \frac{\mathbb{E}[Z]}{c}$$

Subgaussian

Z is 1-subgaussian i.e. for all $\lambda \in \mathbb{R}$

$$\mathbb{E}[\exp(\lambda Z)] \leq \exp\left(\frac{\lambda^2}{2}\right)$$

Which distributions are σ -subgaussian? Gaussian, Bernoulli

Concentration of sub-Gaussian random variables

Chernoff-Hoeffding bound

Let $Z_1, \ldots Z_n$ are independent sub-Gaussian random variables with mean μ and variance 1 and,

$$\hat{\mu} = \frac{1}{n} \sum_{t=1}^{n} Z_t,$$

then for any $\delta \in (0,1)$,

$$\mathbb{P}\left(\hat{\mu} \ge \mu + \sqrt{\frac{2\log(1/\delta)}{n}}\right) \le \delta$$

$$\mathbb{P}\left(\hat{\mu} \le \mu - \sqrt{\frac{2\log(1/\delta)}{n}}\right) \le \delta$$

Recall: optimism principle in arm selection

- Optimistic estimate of an arm = Largest value it could plausibly be.
- ullet Optimistic estimate of arm $a=\hat{\mu}_a(t-1)+$ optimism term

Optimistic arm selection

Select arm $a(t) = \arg \max_{a} [\hat{\mu}_{a}(t-1) + \text{optimism term}].$

Optimism term of the form
$$\sqrt{\frac{2\log(1/\delta)}{n}}$$
?

Proving Chernoff-Hoeffding bound

To prove:
$$\mathbb{P}\left(\hat{\mu} \geq \mu + \sqrt{\frac{2\log(1/\delta)}{n}}\right) \leq \delta$$

 $(1) \mathbb{P}(Z \geq c) \leq \frac{\mathbb{E}[Z]}{c}$

(2) $\mathbb{E}[\exp(\lambda Z)] \le \exp\left(\frac{\lambda^2}{2}\right)$

Proof:

Proof:
$$\mathbb{P}(\hat{\mu} \ge \mu + \epsilon) = \mathbb{P}\left(\frac{1}{n}\sum_{t=1}^{n} Z_{t} \ge \mu + \epsilon\right)$$

Proving Chernoff-Hoeffding bound

Proof:

$$\mathbb{P}(\hat{\mu} \ge \mu + \epsilon) = \mathbb{P}\left(\frac{1}{n}\sum_{t=1}^{n} Z_t \ge \mu + \epsilon\right) = \mathbb{P}\left(\sum_{t=1}^{n} (Z_t - \mu) \ge \epsilon n\right)$$

Proving Chernoff-Hoeffding bound

$$\bigcirc{1} \mathbb{P}(Z \geq c) \leq \frac{\mathbb{E}[Z]}{c}$$

(2) $\mathbb{E}[\exp(\lambda Z)] \le \exp\left(\frac{\lambda^2}{2}\right)$

Proof:

$$\mathbb{P}(\hat{\mu} \ge \mu + \epsilon) = \mathbb{P}\left(\frac{1}{n}\sum_{t=1}^{n} Z_t \ge \mu + \epsilon\right) = \mathbb{P}\left(\sum_{t=1}^{n} (Z_t - \mu) \ge \epsilon n\right)$$

$$= \mathbb{P}\left(\exp\left(\lambda \sum_{t=1}^{n} (Z_{t} - \mu)\right) \ge \exp\left(\lambda \epsilon n\right)\right)$$

$$\leq \exp(-\lambda \epsilon n) \cdot \mathbb{E}\left[\exp\left(\lambda \sum_{t=1}^{n} (Z_t - \mu)\right)\right]$$

by Markov's inequality ${\scriptsize \scriptsize{\scriptsize{(1)}}}$

for some $\lambda \in \mathbb{R}$

Proof:

Proof:

$$\mathbb{P}(\hat{\mu} \ge \mu + \epsilon) = \mathbb{P}\left(\frac{1}{n}\sum_{t=1}^{n} Z_{t} \ge \mu + \epsilon\right) = \mathbb{P}\left(\sum_{t=1}^{n} (Z_{t} - \mu) \ge \epsilon n\right)$$

$$= \mathbb{P}\left(\exp\left(\lambda \sum_{t=1}^{n} (Z_{t} - \mu)\right) \ge \exp\left(\lambda \epsilon n\right)\right) \quad \text{for some } \lambda \in \mathbb{R}$$

$$\le \exp\left(-\lambda \epsilon n\right) \cdot \mathbb{E}\left[\exp\left(\lambda \sum_{t=1}^{n} (Z_{t} - \mu)\right)\right] \quad \text{by Markov's inequality } 1$$

$$= \exp\left(-\lambda \epsilon n\right) \cdot \mathbb{E}\left[\prod_{t=1}^{n} \exp\left(\lambda (Z_{t} - \mu)\right)\right] \le \exp\left(-\lambda \epsilon n\right) \cdot \prod_{t=1}^{n} \exp\left(\lambda^{2} / 2\right)$$

$$\begin{aligned} &\textbf{To prove: } \mathbb{P}\left(\hat{\mu} \geq \mu + \sqrt{\frac{2\log(1/\delta)}{n}}\right) \leq \delta & \text{ in } \mathbb{P}(Z \geq c) \leq \frac{\mathbb{E}[Z]}{c} \\ & \text{ in } \mathbb{P}(Z \geq c) \leq \frac{\mathbb{E}[Z]}{c} \end{aligned} \end{aligned}$$

$$\begin{aligned} &\mathbb{P}(n) \geq \mathbb{P}(n) \geq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n) \end{aligned}$$

$$\begin{aligned} &\mathbb{P}(n) \geq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n) \\ &\mathbb{P}(n) \geq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n) \end{aligned}$$

$$\begin{aligned} &\mathbb{P}(n) \geq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n) \\ &= \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n) \end{aligned}$$
 for some $n \geq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n)$ for some $n \geq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n)$
$$\leq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n)$$
 for some $n \geq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n)$
$$\leq \mathbb{P}(n) \leq \mathbb{P}(n) \leq \mathbb{P}(n)$$
 for some $n \geq \mathbb{P}(n) \leq \mathbb{P}(n)$ for some $n \geq \mathbb{P}(n)$

To prove:
$$\mathbb{P}\left(\hat{\mu} \geq \mu + \sqrt{\frac{2\log(1/\delta)}{n}}\right) \leq \delta$$
 ① $\mathbb{P}(Z \geq c) \leq \frac{\mathbb{E}[Z]}{c}$ ② $\mathbb{E}[\exp(\lambda Z)] \leq \exp\left(\frac{\lambda^2}{2}\right)$ Proof: $\mathbb{P}(\hat{\mu} \geq \mu + \epsilon) = \mathbb{P}\left(\frac{1}{n}\sum_{t=1}^n Z_t \geq \mu + \epsilon\right) = \mathbb{P}\left(\sum_{t=1}^n (Z_t - \mu) \geq \epsilon n\right)$ for some $\lambda \in \mathbb{R}$ $\leq \exp\left(-\lambda \epsilon n\right) \cdot \mathbb{E}\left[\exp\left(\lambda \sum_{t=1}^n (Z_t - \mu)\right)\right]$ by Markov's inequality ① $= \exp\left(-\lambda \epsilon n\right) \cdot \mathbb{E}\left[\prod_{t=1}^n \exp\left(\lambda (Z_t - \mu)\right)\right] \leq \exp\left(-\lambda \epsilon n\right) \cdot \prod_{t=1}^n \exp\left(\lambda^2/2\right)$ $= \exp\left(-\lambda \epsilon n + \frac{\lambda^2 n}{2}\right) = \exp\left(-\frac{\epsilon^2 n}{2}\right)$ for $\lambda = \epsilon$ $\mathbb{P}(\hat{\mu} \geq \mu + \epsilon) \leq \exp\left(-\frac{\epsilon^2 n}{2}\right)$

Proof:

$$\mathbb{P}(\hat{\mu} \ge \mu + \epsilon) = \mathbb{P}\left(\frac{1}{n}\sum_{t=1}^{n} Z_t \ge \mu + \epsilon\right) = \mathbb{P}\left(\sum_{t=1}^{n} (Z_t - \mu) \ge \epsilon n\right)$$

$$=\mathbb{P}\left(\exp\left(\lambda\sum_{t=1}^{n}\left(Z_{t}-\mu
ight)
ight)\geq\exp\left(\lambda\epsilon n
ight)
ight) \qquad ext{for some }\lambda\in\mathbb{R}$$

$$\leq \exp\left(-\lambda\epsilon n\right)\cdot \mathbb{E}\left[\exp\left(\lambda\sum_{t=1}^{n}\left(Z_{t}-\mu\right)\right)\right]$$
 by Markov's inequality ①

$$= \exp(-\lambda \epsilon n) \cdot \mathbb{E}\left[\prod_{t=1}^{n} \exp(\lambda (Z_t - \mu))\right] \leq \exp(-\lambda \epsilon n) \cdot \prod_{t=1}^{n} \exp(\lambda^2/2)$$

$$= \exp\left(-\lambda \epsilon n + \frac{\lambda^2 n}{2}\right) = \exp\left(-\frac{\epsilon^2 n}{2}\right) \quad \text{for } \lambda = \epsilon$$

$$\mathbb{P}\left(\hat{\mu} \ge \mu + \epsilon\right) \le \exp\left(-\frac{\epsilon^2 n}{2}\right) \qquad \epsilon = \sqrt{\frac{2\log(1/\delta)}{n}} \to \delta = \exp\left(-\frac{\epsilon^2 n}{2}\right)$$

Upper Confidence Bound (UCB)

algorithm

Upper Confidence Bound (UCB): Choose Arms Optimistically

- ullet Optimistic estimate of arm $a=\hat{\mu}_a(t-1)+$ optimism term
- Optimism term of the form $\sqrt{\frac{2\log(1/\delta)}{n}}$?

Optimistic arm selection

Select arm $a(t) = \arg\max_{a} [\hat{\mu}_{a}(t-1) + \text{optimism term}].$

Upper Confidence Bound (UCB): Choose Arms Optimistically

- ullet Optimistic estimate of arm $a=\hat{\mu}_a(t-1)+$ optimism term
- UCB estimate of arm $a = \hat{\mu}_{\sf a}(t-1) + \sqrt{\frac{2\log(1/\delta)}{N_{\sf a}(t-1)}}$

UCB arm selection

Select arm
$$a(t) = \arg\max_{a} \left[\hat{\mu}_a(t-1) + \sqrt{\frac{2\log(1/\delta)}{N_a(t-1)}} \right]$$
.

Upper Confidence Bound (UCB): Choose arms optimally

Algorithm UCB algorithm Auer et al. [2002]

Parameters: Confidence level δ

- 1: **for** t = 1, ..., K **do**
- 2: Choose each arm once.
- 3: end for
- 4: **for** $t = K + 1, \dots$ **do**
- 5: Compute empirical means $\hat{\mu}_1(t-1), \ldots, \hat{\mu}_K(t-1)$.
- 6: Select arm $a(t) = \arg\max_{a} \left[\hat{\mu}_{a}(t-1) + \sqrt{\frac{2\log(1/\delta)}{N_{a}(t-1)}} \right]$.
- 7: end for

Regret bound for UCB

Theorem

The expected cumulative regret of UCB after T time steps is

$$Regret = \mathfrak{R}(T) \leq \sum_{a:\Delta_a>0} \frac{16\log(T)}{\Delta_a} + 3\Delta_a.$$

Logarithmic regret ©

• Decomposition of regret over the arms.

- Decomposition of regret over the arms.
- On a 'good' event, prove that sub-optimal arms are not played too often.

- Decomposition of regret over the arms.
- On a 'good' event, prove that sub-optimal arms are not played too often.
- Prove that the 'good' event occurs with a high probability.

- Decomposition of regret over the arms. $\Re(T) = \sum_{a=1}^{N} \Delta_a \mathbb{E}[N_a(T)]$ where $\Delta_a := \mu_* - \mu_a$ and $N_a(T) := \sum_{t=1}^{T} \mathbb{I}(a(t) = a)$
- On a 'good' event, prove that sub-optimal arms are not played too often.
- Prove that the 'good' event occurs with a high probability.

UCB arm selection

Select arm
$$a(t) = \arg\max_{a} \left[\hat{\mu}_{a}(t-1) + \sqrt{\frac{2\log(1/\delta)}{N_{a}(t-1)}} \right]$$
.

'Good event': When UCB performs well.

Fix a sub-optimal arm a. Assume for all t,

UCB arm selection

Select arm
$$a(t) = \arg\max_{a} \left[\hat{\mu}_{a}(t-1) + \sqrt{\frac{2\log(1/\delta)}{N_{a}(t-1)}} \right]$$
.

'Good event': When UCB performs well.

Fix a sub-optimal arm a. Assume for all t,

Empirical estimate of sub-optimal arm a is not too big.

UCB arm selection

Select arm
$$a(t) = \arg\max_{a} \left[\hat{\mu}_a(t-1) + \sqrt{\frac{2 \log(1/\delta)}{N_a(t-1)}} \right]$$
.

'Good event': When UCB performs well.

Fix a sub-optimal arm a. Assume for all t,

Empirical estimate of sub-optimal arm a is not too big.

$$\hat{\mu}_{\mathsf{a}}(t-1) \leq \mu_{\mathsf{a}} + \sqrt{\frac{2\log(1/\delta)}{N_{\mathsf{a}}(t-1)}}.$$

UCB arm selection

Select arm
$$a(t) = \arg\max_{a} \left[\hat{\mu}_a(t-1) + \sqrt{\frac{2\log(1/\delta)}{N_a(t-1)}} \right]$$
.

'Good event': When UCB performs well.

Fix a sub-optimal arm a. Assume for all t,

Empirical estimate of sub-optimal arm a is not too big.

$$\hat{\mu}_{\mathsf{a}}(t-1) \leq \mu_{\mathsf{a}} + \sqrt{\frac{2\log(1/\delta)}{N_{\mathsf{a}}(t-1)}}.$$

Empirical estimate of optimal arm a_* is not too small.

UCB arm selection

Select arm
$$a(t) = \arg\max_{a} \left[\hat{\mu}_a(t-1) + \sqrt{\frac{2 \log(1/\delta)}{N_a(t-1)}} \right]$$
.

'Good event': When UCB performs well.

Fix a sub-optimal arm a. Assume for all t,

Empirical estimate of sub-optimal arm a is not too big.

$$\hat{\mu}_{\mathsf{a}}(t-1) \leq \mu_{\mathsf{a}} + \sqrt{\frac{2\log(1/\delta)}{N_{\mathsf{a}}(t-1)}}.$$

Empirical estimate of optimal arm a_* is not too small.

$$\hat{\mu}_{a_*}(t-1) \ge \mu_* - \sqrt{\frac{2\log(1/\delta)}{N_{a_*}(t-1)}}.$$

UCB arm selection

Select arm
$$a(t) = \arg\max_{a} \left[\hat{\mu}_{a}(t-1) + \sqrt{\frac{2\log(1/\delta)}{N_{a}(t-1)}} \right]$$
.

$$\boxed{1} \ \mu_{\mathsf{a}} \ + \ \sqrt{\frac{2\log(1/\delta)}{N_{\mathsf{a}}(t-1)}} \geq \hat{\mu}_{\mathsf{a}}(t-1),$$

$$\widehat{ 2) } \; \widehat{\mu}_{a_*}(t-1) \; + \; \sqrt{\frac{2 \log(1/\delta)}{N_{a_*}(t-1)}} \geq \mu_*.$$

UCB arm selection

Select arm
$$a(t) = \arg\max_{a} \left[\hat{\mu}_{a}(t-1) + \sqrt{\frac{2 \log(1/\delta)}{N_{a}(t-1)}} \right]$$
.

$$\boxed{1} \; \mu_{\mathsf{a}} \; + \; \sqrt{\frac{2 \log(1/\delta)}{N_{\mathsf{a}}(t-1)}} \geq \hat{\mu}_{\mathsf{a}}(t-1),$$

$$(2) \hat{\mu}_{a_*}(t-1) + \sqrt{\frac{2\log(1/\delta)}{N_{a_*}(t-1)}} \geq \mu_*.$$

$$\mu_{\mathrm{a}} \ + \ 2\sqrt{\frac{2\log(1/\delta)}{N_{\mathrm{a}}(t-1)}} \geq \hat{\mu}_{\mathrm{a}}(t-1) \ + \ \sqrt{\frac{2\log(1/\delta)}{N_{\mathrm{a}}(t-1)}} \qquad \mathrm{using} \ \boxed{1}$$

UCB arm selection

Select arm
$$a(t) = \arg\max_{a} \left[\hat{\mu}_{a}(t-1) + \sqrt{\frac{2 \log(1/\delta)}{N_{a}(t-1)}} \right]$$
.

$$\boxed{1} \ \mu_{\mathsf{a}} \ + \ \sqrt{\frac{2\log(1/\delta)}{N_{\mathsf{a}}(t-1)}} \geq \hat{\mu}_{\mathsf{a}}(t-1),$$

(2)
$$\hat{\mu}_{a_*}(t-1) + \sqrt{\frac{2\log(1/\delta)}{N_{a_*}(t-1)}} \ge \mu_*$$
.

$$\begin{split} \mu_{a} \; + \; 2\sqrt{\frac{2\log(1/\delta)}{N_{a}(t-1)}} & \geq \hat{\mu}_{a}(t-1) \; + \; \sqrt{\frac{2\log(1/\delta)}{N_{a}(t-1)}} \qquad \text{using } \boxed{1} \\ & \geq \hat{\mu}_{a_{*}}(t-1) \; + \; \sqrt{\frac{2\log(1/\delta)}{N_{a_{*}}(t-1)}} \end{split}$$

UCB arm selection

Select arm
$$a(t) = \arg\max_{a} \left[\hat{\mu}_{a}(t-1) + \sqrt{\frac{2 \log(1/\delta)}{N_{a}(t-1)}} \right]$$
.

$$\boxed{1} \; \mu_{\mathsf{a}} \; + \; \sqrt{\frac{2 \log(1/\delta)}{N_{\mathsf{a}}(t-1)}} \geq \hat{\mu}_{\mathsf{a}}(t-1),$$

(2)
$$\hat{\mu}_{a_*}(t-1) + \sqrt{\frac{2\log(1/\delta)}{N_{a_*}(t-1)}} \ge \mu_*$$
.

$$\begin{split} \mu_{a} \; + \; 2\sqrt{\frac{2\log(1/\delta)}{N_{a}(t-1)}} & \geq \hat{\mu}_{a}(t-1) \; + \; \sqrt{\frac{2\log(1/\delta)}{N_{a}(t-1)}} \qquad \text{using } \boxed{1} \\ & \geq \hat{\mu}_{a_{*}}(t-1) \; + \; \sqrt{\frac{2\log(1/\delta)}{N_{a_{*}}(t-1)}} \\ & \geq \mu_{*} \end{split}$$

UCB arm selection

Select arm
$$a(t) = \arg\max_{a} \left[\hat{\mu}_a(t-1) + \sqrt{\frac{2\log(1/\delta)}{N_a(t-1)}} \right]$$
.

$$\boxed{1} \ \mu_{\mathsf{a}} \ + \ \sqrt{\frac{2\log(1/\delta)}{N_{\mathsf{a}}(t-1)}} \geq \hat{\mu}_{\mathsf{a}}(t-1),$$

$$(2) \hat{\mu}_{a_*}(t-1) + \sqrt{\frac{2\log(1/\delta)}{N_{a_*}(t-1)}} \geq \mu_*.$$

$$\begin{split} \mu_{\mathsf{a}} \; + \; 2\sqrt{\frac{2\log(1/\delta)}{N_{\mathsf{a}}(t-1)}} \, \geq \, \hat{\mu}_{\mathsf{a}}(t-1) \; + \; \sqrt{\frac{2\log(1/\delta)}{N_{\mathsf{a}}(t-1)}} \qquad \text{using } \boxed{1} \\ \geq \, \hat{\mu}_{\mathsf{a}_*}(t-1) \; + \; \sqrt{\frac{2\log(1/\delta)}{N_{\mathsf{a}_*}(t-1)}} \\ \geq \, \mu_* \; = \; \mu_{\mathsf{a}} + \Delta_{\mathsf{a}} \qquad \qquad \text{using } \boxed{2} \end{split}$$

$$y_a' + 2\sqrt{\frac{2\log(1/\delta)}{N_a(t-1)}} \ge y_a' + \Delta_a$$

If the good event occurs, at time t, the algorithm selects a only if,

$$2\sqrt{rac{2\log(1/\delta)}{N_a(t-1)}} \geq \Delta_a$$
 $N_a(t-1) \leq rac{8\log(1/\delta)}{\Delta_a^2}$

So assuming the good event occurs,

$$N_a(T) \leq \frac{8\log(1/\delta)}{\Delta_a^2} + 1.$$

The good event,

$$\mu_{a} + \sqrt{\frac{2\log(1/\delta)}{N_{a}(t-1)}} \geq \hat{\mu}_{a}(t-1)$$

$$\hat{\mu}_{a_{*}}(t-1) + \sqrt{\frac{2\log(1/\delta)}{N_{a_{*}}(t-1)}} \geq \mu_{*}$$

The good event does not occur,

$$\mu_{a} + \sqrt{\frac{2\log(1/\delta)}{N_{a}(t-1)}} \leq \hat{\mu}_{a}(t-1)$$
$$\hat{\mu}_{a_{*}}(t-1) + \sqrt{\frac{2\log(1/\delta)}{N_{a_{*}}(t-1)}} \leq \mu_{*}$$

The good event does not occur at time step t,

$$\mu_{\mathsf{a}} + \sqrt{rac{2\log(1/\delta)}{N_{\mathsf{a}}(t-1)}} \leq \hat{\mu}_{\mathsf{a}}(t-1)$$
 $\hat{\mu}_{a_*}(t-1) + \sqrt{rac{2\log(1/\delta)}{N_{a_*}(t-1)}} \leq \mu_*$

Chernoff-Hoeffding bound shows that

$$\mathbb{P}\left(\hat{\mu}_{a}(t-1) \geq \mu_{a} + \sqrt{\frac{2\log(1/\delta)}{N_{a}(t-1)}}\right) \leq \delta$$

$$\mathbb{P}\left(\hat{\mu}_{a_{*}}(t-1) \leq \mu_{*} - \sqrt{\frac{2\log(1/\delta)}{N_{a_{*}}(t-1)}}\right) \leq \delta$$

The good event does not occur at some step t, $1 \le t \le T$,

$$\mu_{\mathsf{a}} + \sqrt{rac{2\log(1/\delta)}{\mathsf{N}_{\mathsf{a}}(t-1)}} \leq \hat{\mu}_{\mathsf{a}}(t-1)$$
 $\hat{\mu}_{\mathsf{a}_*}(t-1) + \sqrt{rac{2\log(1/\delta)}{\mathsf{N}_{\mathsf{a}_*}(t-1)}} \leq \mu_*$

Chernoff-Hoeffding bound combined with union bound $\mathbb{P}(\cup_i E_i) \leq \sum_i \mathbb{P}(E_i)$,

$$\mathbb{P}\left(\exists \tau \leq T : \hat{\mu}_{a}(\tau - 1) \geq \mu + \sqrt{\frac{2\log(1/\delta)}{N_{a}(\tau - 1)}}\right) \leq \delta T$$

$$\mathbb{P}\left(\exists \tau \leq T : \hat{\mu}_{a_{*}}(\tau - 1) \leq \mu_{*} - \sqrt{\frac{2\log(1/\delta)}{N_{a_{*}}(\tau - 1)}}\right) \leq \delta T$$

- 1 $N_a(T) \le \frac{8 \log(1/\delta)}{\Delta_a^2} + 1$ when the good event occurs.
- 2 Probability (good event does not occur) $\leq 2\delta T$.

Using the decomposition of regret $\mathfrak{R}(T)$ over the arms,

$$\mathfrak{R}(T) = \sum_{a=1}^{K} \Delta_a \, \mathbb{E}[N_a(T)]$$

- 1 $N_a(T) \leq \frac{8 \log(1/\delta)}{\Delta_a^2} + 1$ when the good event occurs.
- 2 Probability (good event does not occur) $\leq 2\delta T$.

Using the decomposition of regret $\mathfrak{R}(T)$ over the arms,

$$\mathfrak{R}(T) = \sum_{a=1}^{K} \Delta_a \, \mathbb{E}[N_a(T)]$$

$$\leq \sum_{a:\Delta_a>0} \Delta_a \left[\frac{8 \log(1/\delta)}{\Delta_a^2} + 1 + 2\delta T \cdot T \right]$$

- 1 $N_a(T) \leq \frac{8 \log(1/\delta)}{\Delta^2} + 1$ when the good event occurs.
- 2 Probability (good event does not occur) $\leq 2\delta T$.

Using the decomposition of regret $\Re(T)$ over the arms,

$$\begin{split} \mathfrak{R}(T) &= \sum_{a=1}^K \Delta_a \, \mathbb{E}[\textit{N}_a(T)] \\ &\leq \sum_{a:\Delta_a>0} \Delta_a \left[\frac{8 \log(1/\delta)}{\Delta_a^2} + 1 + 2 \delta \, T \cdot T \right] \\ &\leq \sum_{a:\Delta_a>0} \Delta_a \left[\frac{8 \log(T^2)}{\Delta_a^2} + 1 + 2 \frac{1}{T^2} \, T^2 \right] \qquad \text{choosing } \delta = 1/T^2, \end{split}$$

- 1 $N_a(T) \leq \frac{8 \log(1/\delta)}{\Delta_a^2} + 1$ when the good event occurs.
- 2 Probability (good event does not occur) $\leq 2\delta T$.

Using the decomposition of regret $\Re(T)$ over the arms,

$$\begin{split} \mathfrak{R}(T) &= \sum_{a=1}^K \Delta_a \, \mathbb{E}[N_a(T)] \\ &\leq \sum_{a:\Delta_a>0} \Delta_a \left[\frac{8 \log(1/\delta)}{\Delta_a^2} + 1 + 2 \delta T \cdot T \right] \\ &\leq \sum_{a:\Delta_a>0} \Delta_a \left[\frac{8 \log(T^2)}{\Delta_a^2} + 1 + 2 \frac{1}{T^2} T^2 \right] \qquad \text{choosing } \delta = 1/T^2, \\ &= \sum_{a:\Delta_a>0} \frac{16 \log(T)}{\Delta_a} + 3 \Delta_a. \end{split}$$

Regret Bound for UCB

Theorem

The expected cumulative regret of UCB after T time steps is

$$\textit{Regret} = \mathfrak{R}(\textit{T}) \leq \sum_{\textit{a}: \Delta_{\textit{a}} > 0} \frac{16 \log(\textit{T})}{\Delta_{\textit{a}}} + 3\Delta_{\textit{a}}.$$

Regret Bound for UCB

Theorem

The expected cumulative regret of UCB after T time steps is

$$Regret = \mathfrak{R}(T) \leq \sum_{a:\Delta_a>0} \frac{16\log(T)}{\Delta_a} + 3\Delta_a.$$

Distribution-dependent regret bound.

$$\mathfrak{R}(T) = \sum_{a:\Delta_a>0} \Delta_a \, \mathbb{E}[N_a(T)]$$

$$\begin{split} \mathfrak{R}(T) &= \sum_{a:\Delta_{a}>0} \Delta_{a} \, \mathbb{E}[N_{a}(T)] \\ &= \sum_{a:\Delta_{a}>0, \Delta_{a}\leq \Delta} \Delta_{a} \, \mathbb{E}[N_{a}(T)] + \sum_{a:\Delta_{a}>\Delta} \Delta_{a} \, \mathbb{E}[N_{a}(T)] \end{split}$$

$$\mathfrak{R}(T) = \sum_{a:\Delta_{a}>0} \Delta_{a} \mathbb{E}[N_{a}(T)]$$

$$= \sum_{a:\Delta_{a}>0,\Delta_{a}\leq\Delta} \Delta_{a} \mathbb{E}[N_{a}(T)] + \sum_{a:\Delta_{a}>\Delta} \Delta_{a} \mathbb{E}[N_{a}(T)]$$

$$\leq \Delta T + \sum_{a:\Delta_{a}>\Delta} \frac{16\log(T)}{\Delta_{a}} + 3\Delta_{a}$$

$$\begin{split} \mathfrak{R}(T) &= \sum_{a:\Delta_a>0} \Delta_a \, \mathbb{E}[N_a(T)] \\ &= \sum_{a:\Delta_a>0, \Delta_a \leq \Delta} \Delta_a \, \mathbb{E}[N_a(T)] + \sum_{a:\Delta_a>\Delta} \Delta_a \, \mathbb{E}[N_a(T)] \\ &\leq \Delta T + \sum_{a:\Delta_a>\Delta} \frac{16 \log(T)}{\Delta_a} + 3\Delta_a \\ &\leq O(\sqrt{KT \log(T)}) \quad \text{using } \Delta = \sqrt{K \log T/T}. \end{split}$$

A primer on big-oh notation O(.)

• Stationary stochastic bandits.

- Stationary stochastic bandits.
- ullet Why greedy and ϵ -greedy does not work?

- Stationary stochastic bandits.
- Why greedy and ϵ -greedy does not work?
- A short introduction to concentration of measure.

- Stationary stochastic bandits.
- Why greedy and ϵ -greedy does not work?
- A short introduction to concentration of measure.
- UCB algorithm and its regret bound.

Next lecture

• Bayesian way of looking at bandits.

Next lecture

- Bayesian way of looking at bandits.
- Leading to another algorithm and its regret bound.

References i

References

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. *Mach. Learn.*, 47(2–3):235–256, may 2002. ISSN 0885-6125. doi: 10.1023/A:1013689704352. URL https://doi.org/10.1023/A:1013689704352.