
Lecture 2 - Upper Confidence Bound

Algorithm for Bandits

Pratik Gajane

September 12, 2022

2AMM20 Research Topics in Data Mining

Eindhoven University of Technology

1

A Quick Recap of Lecture 1

• Introduction to reinforcement learning.

• Mathematical formulation of a reinforcement learning problem.

• Formulating RL with multi-armed bandits and its variants.

• Formulating RL with Markov decision processes.

2

Lecture 2 : Outline

• Introduction to Bandits and Mathematical Setting

• Greedy : A Simple Solution (and why it does not work?)

• Acting optimistically : Upper Confidence Bound algorithm.

3

Introduction

What’s in a Name? Why “Bandits”?

A single-armed bandit.

One arm ≡ one choice.

A multi-armed bandit.

Multiple arms ≡ multiple choices.

4

What’s in a Name? Why “Bandits”?

A single-armed bandit.

One arm ≡ one choice.

A multi-armed bandit.

Multiple arms ≡ multiple choices.

4

Multi-Armed Bandits

Image source :Microsoft research

• Agent faces repeated choice among K different actions/arms.

• Agent acts according to some policy π.

• At each time step t, the agent selects an action and then receives a

numerical reward for that action.

(Bandit feedback).

• Agent learns only through received rewards. No other way to learn.

• Goal : Maximize the sum of received rewards.

5

https\protect \protect \leavevmode@ifvmode \kern +.1667em\relax ://www.microsoft.com/en-us/research/

Multi-Armed Bandits

Image source :Microsoft research

• Agent faces repeated choice among K different actions/arms.

• Agent acts according to some policy π.

• At each time step t, the agent selects an action and then receives a

numerical reward for that action.

(Bandit feedback).

• Agent learns only through received rewards. No other way to learn.

• Goal : Maximize the sum of received rewards.

5

https\protect \protect \leavevmode@ifvmode \kern +.1667em\relax ://www.microsoft.com/en-us/research/

Multi-Armed Bandits

Image source :Microsoft research

• Agent faces repeated choice among K different actions/arms.

• Agent acts according to some policy π.

• At each time step t, the agent selects an action and then receives a

numerical reward for that action.(Bandit feedback).

• Agent learns only through received rewards. No other way to learn.

• Goal : Maximize the sum of received rewards.

5

https\protect \protect \leavevmode@ifvmode \kern +.1667em\relax ://www.microsoft.com/en-us/research/

Multi-Armed Bandits

Image source :Microsoft research

• Agent faces repeated choice among K different actions/arms.

• Agent acts according to some policy π.

• At each time step t, the agent selects an action and then receives a

numerical reward for that action.(Bandit feedback).

• Agent learns only through received rewards. No other way to learn.

• Goal : Maximize the sum of received rewards.

5

https\protect \protect \leavevmode@ifvmode \kern +.1667em\relax ://www.microsoft.com/en-us/research/

Multi-Armed Bandits

Image source :Microsoft research

• Agent faces repeated choice among K different actions/arms.

• Agent acts according to some policy π.

• At each time step t, the agent selects an action and then receives a

numerical reward for that action.(Bandit feedback).

• Agent learns only through received rewards. No other way to learn.

• Goal : Maximize the sum of received rewards.

5

https\protect \protect \leavevmode@ifvmode \kern +.1667em\relax ://www.microsoft.com/en-us/research/

Exploration/Exploitation Dilemma

Image source:UC Berkeley AI course, lecture 11

• Exploit. Choose actions tried in the past and found to be rewarding.

• Explore. Choose unexplored actions to see if they are more

rewarding.

• Neither exploration nor exploitation can be pursued exclusively.

• A good solution balances exploration and exploitation.

6

http://ai.berkeley.edu/lecture_slides.html

Exploration/Exploitation Dilemma

Image source:UC Berkeley AI course, lecture 11

• Exploit. Choose actions tried in the past and found to be rewarding.

• Explore. Choose unexplored actions to see if they are more

rewarding.

• Neither exploration nor exploitation can be pursued exclusively.

• A good solution balances exploration and exploitation.

6

http://ai.berkeley.edu/lecture_slides.html

Exploration/Exploitation Dilemma

Image source:UC Berkeley AI course, lecture 11

• Exploit. Choose actions tried in the past and found to be rewarding.

• Explore. Choose unexplored actions to see if they are more

rewarding.

• Neither exploration nor exploitation can be pursued exclusively.

• A good solution balances exploration and exploitation.

6

http://ai.berkeley.edu/lecture_slides.html

Exploration/Exploitation Dilemma

Image source:UC Berkeley AI course, lecture 11

• Exploit. Choose actions tried in the past and found to be rewarding.

• Explore. Choose unexplored actions to see if they are more

rewarding.

• Neither exploration nor exploitation can be pursued exclusively.

• A good solution balances exploration and exploitation.

6

http://ai.berkeley.edu/lecture_slides.html

Applications!

• Clinical trials

• Recommendation systems

• Ad placement

• Dynamic pricing

• And many more . . .

7

Mathematical setting

Stationary Stochastic Bandits

• Number of arms = K .

• Reward for arm a ∼ Xa with mean µa.

• X1,X2, . . .XK are unknown stationary distributions.

• At each time step t = 1, . . . ,T , the agent,

• acts according to a policy π and chooses an arm a(t), and

• receives a numerical reward r(t) ∼ Xa(t).

• T is called the horizon.

8

Stationary Stochastic Bandits

• Number of arms = K .

• Reward for arm a ∼ Xa with mean µa.

• X1,X2, . . .XK are unknown stationary distributions.

• At each time step t = 1, . . . ,T , the agent,

• acts according to a policy π and chooses an arm a(t), and

• receives a numerical reward r(t) ∼ Xa(t).

• T is called the horizon.

8

Stationary Stochastic Bandits

• Number of arms = K .

• Reward for arm a ∼ Xa with mean µa.

• X1,X2, . . .XK are unknown stationary distributions.

• At each time step t = 1, . . . ,T , the agent,

• acts according to a policy π and chooses an arm a(t), and

• receives a numerical reward r(t) ∼ Xa(t).

• T is called the horizon.

8

Stationary Stochastic Bandits

• Number of arms = K .

• Reward for arm a ∼ Xa with mean µa.

• X1,X2, . . .XK are unknown stationary distributions.

• At each time step t = 1, . . . ,T , the agent,

• acts according to a policy π and chooses an arm a(t), and

• receives a numerical reward r(t) ∼ Xa(t).

• T is called the horizon.

8

Stationary Stochastic Bandits

• Number of arms = K .

• Reward for arm a ∼ Xa with mean µa.

• X1,X2, . . .XK are unknown stationary distributions.

• At each time step t = 1, . . . ,T , the agent,

• acts according to a policy π and chooses an arm a(t), and

• receives a numerical reward r(t) ∼ Xa(t).

• T is called the horizon.

8

Distributional Assumptions?

Distributions X1, . . . ,XK are unknown to the agent, but we may make

some assumptions. E.g.,

• Xa is Bernoulli with unknown mean µa ∈ [0, 1].

• Xa is Gaussian with unit variance and unknown mean µa ∈ R.

Which assumption do we make? We will see in due time.

9

Distributional Assumptions?

Distributions X1, . . . ,XK are unknown to the agent, but we may make

some assumptions. E.g.,

• Xa is Bernoulli with unknown mean µa ∈ [0, 1].

• Xa is Gaussian with unit variance and unknown mean µa ∈ R.

Which assumption do we make? We will see in due time.

9

Distributional Assumptions?

Distributions X1, . . . ,XK are unknown to the agent, but we may make

some assumptions. E.g.,

• Xa is Bernoulli with unknown mean µa ∈ [0, 1].

• Xa is Gaussian with unit variance and unknown mean µa ∈ R.

Which assumption do we make? We will see in due time.

9

Distributional Assumptions?

Distributions X1, . . . ,XK are unknown to the agent, but we may make

some assumptions. E.g.,

• Xa is Bernoulli with unknown mean µa ∈ [0, 1].

• Xa is Gaussian with unit variance and unknown mean µa ∈ R.

Which assumption do we make? We will see in due time.

9

Stationary Stochastic Bandits : Example

a1, Bernoulli, mean µ1 = 0.9 a2, Bernoulli, mean µ2 = 0.8

• Number of arms = K = 2.

• Reward for arm a1 ∼ Bernoulli with mean µ1 = 0.9.

Reward for arm a2 ∼ Bernoulli with mean µ2 = 0.8

• Agent policy π : Choose arms alternatingly.

• The agent,

• at t = 1, 3, . . . , picks arm a1, reward r(t) ∼ Bernoulli with µ1 = 0.9;

• at t = 2, 4, . . . , picks arm a2, reward r(t) ∼ Bernoulli with µ2 = 0.8.

10

Stationary Stochastic Bandits : Example

a1, Bernoulli, mean µ1 = 0.9 a2, Bernoulli, mean µ2 = 0.8

• Number of arms = K = 2.

• Reward for arm a1 ∼ Bernoulli with mean µ1 = 0.9.

Reward for arm a2 ∼ Bernoulli with mean µ2 = 0.8

• Agent policy π : Choose arms alternatingly.

• The agent,

• at t = 1, 3, . . . , picks arm a1, reward r(t) ∼ Bernoulli with µ1 = 0.9;

• at t = 2, 4, . . . , picks arm a2, reward r(t) ∼ Bernoulli with µ2 = 0.8.

10

Stationary Stochastic Bandits : Example

a1, Bernoulli, mean µ1 = 0.9 a2, Bernoulli, mean µ2 = 0.8

• Number of arms = K = 2.

• Reward for arm a1 ∼ Bernoulli with mean µ1 = 0.9.

Reward for arm a2 ∼ Bernoulli with mean µ2 = 0.8

• Agent policy π : Choose arms alternatingly.

• The agent,

• at t = 1, 3, . . . , picks arm a1, reward r(t) ∼ Bernoulli with µ1 = 0.9;

• at t = 2, 4, . . . , picks arm a2, reward r(t) ∼ Bernoulli with µ2 = 0.8.

10

Stationary Stochastic Bandits : Example

a1, Bernoulli, mean µ1 = 0.9 a2, Bernoulli, mean µ2 = 0.8

• Number of arms = K = 2.

• Reward for arm a1 ∼ Bernoulli with mean µ1 = 0.9.

Reward for arm a2 ∼ Bernoulli with mean µ2 = 0.8

• Agent policy π : Choose arms alternatingly.

• The agent,

• at t = 1, 3, . . . , picks arm a1, reward r(t) ∼ Bernoulli with µ1 = 0.9;

• at t = 2, 4, . . . , picks arm a2, reward r(t) ∼ Bernoulli with µ2 = 0.8.

10

Random Variables, Expectation and Indicator Function

• Random variable : A quantity which depends on a

random/stochastic process.

e.g., outcome of a coin toss, reward drawn from a stochastic

distribution.

• Expectation of a random variable x = E[x] :=
∑

i i · P(x = i).

• Expected value of a random variable is the mean of the related

stochastic process.

• Expectation is linear i.e.,

E[x1 + x2 + · · ·+ xn] = E[x1] + E[x2] + · · ·+ E[xn].

• Indicator function I(E) =

{
1, if E is true,

0, otherwise.

e.g., count of occurrences of E =
T∑
t=1

I(E).

11

Random Variables, Expectation and Indicator Function

• Random variable : A quantity which depends on a

random/stochastic process.

e.g., outcome of a coin toss, reward drawn from a stochastic

distribution.

• Expectation of a random variable x = E[x] :=
∑

i i · P(x = i).

• Expected value of a random variable is the mean of the related

stochastic process.

• Expectation is linear i.e.,

E[x1 + x2 + · · ·+ xn] = E[x1] + E[x2] + · · ·+ E[xn].

• Indicator function I(E) =

{
1, if E is true,

0, otherwise.

e.g., count of occurrences of E =
T∑
t=1

I(E).

11

Random Variables, Expectation and Indicator Function

• Random variable : A quantity which depends on a

random/stochastic process.

e.g., outcome of a coin toss, reward drawn from a stochastic

distribution.

• Expectation of a random variable x = E[x] :=
∑

i i · P(x = i).

• Expected value of a random variable is the mean of the related

stochastic process.

• Expectation is linear i.e.,

E[x1 + x2 + · · ·+ xn] = E[x1] + E[x2] + · · ·+ E[xn].

• Indicator function I(E) =

{
1, if E is true,

0, otherwise.

e.g., count of occurrences of E =
T∑
t=1

I(E).

11

Random Variables, Expectation and Indicator Function

• Random variable : A quantity which depends on a

random/stochastic process.

e.g., outcome of a coin toss, reward drawn from a stochastic

distribution.

• Expectation of a random variable x = E[x] :=
∑

i i · P(x = i).

• Expected value of a random variable is the mean of the related

stochastic process.

• Expectation is linear i.e.,

E[x1 + x2 + · · ·+ xn] = E[x1] + E[x2] + · · ·+ E[xn].

• Indicator function I(E) =

{
1, if E is true,

0, otherwise.

e.g., count of occurrences of E =
T∑
t=1

I(E).

11

Random Variables, Expectation and Indicator Function

• Random variable : A quantity which depends on a

random/stochastic process.

e.g., outcome of a coin toss, reward drawn from a stochastic

distribution.

• Expectation of a random variable x = E[x] :=
∑

i i · P(x = i).

• Expected value of a random variable is the mean of the related

stochastic process.

• Expectation is linear i.e.,

E[x1 + x2 + · · ·+ xn] = E[x1] + E[x2] + · · ·+ E[xn].

• Indicator function I(E) =

{
1, if E is true,

0, otherwise.

e.g., count of occurrences of E =
T∑
t=1

I(E).

11

Random Variables, Expectation and Indicator Function

• Random variable : A quantity which depends on a

random/stochastic process.

e.g., outcome of a coin toss, reward drawn from a stochastic

distribution.

• Expectation of a random variable x = E[x] :=
∑

i i · P(x = i).

• Expected value of a random variable is the mean of the related

stochastic process.

• Expectation is linear i.e.,

E[x1 + x2 + · · ·+ xn] = E[x1] + E[x2] + · · ·+ E[xn].

• Indicator function I(E) =

{
1, if E is true,

0, otherwise.

e.g., count of occurrences of E =
T∑
t=1

I(E).

11

Optimal Policy

a1, Bernoulli, mean µ1 = 0.9 a2, Bernoulli, mean µ2 = 0.8

• Goal : Maximize expected cumulative reward.

• Expected cumulative reward of policy π till T :=E
[∑T

t=1 r(t) | π
]
.

• Optimal policy π∗ := argmaxπ E
[∑T

t=1 r(t) | π
]
.

• Policy π∗ : Play the optimal arm with mean reward µ∗ :=maxa µa.

12

Optimal Policy

a1, Bernoulli, mean µ1 = 0.9 a2, Bernoulli, mean µ2 = 0.8

• Goal : Maximize expected cumulative reward.

• Expected cumulative reward of policy π till T :=E
[∑T

t=1 r(t) | π
]
.

• Optimal policy π∗ := argmaxπ E
[∑T

t=1 r(t) | π
]
.

• Policy π∗ : Play the optimal arm with mean reward µ∗ :=maxa µa.

12

Optimal Policy

a1, Bernoulli, mean µ1 = 0.9 a2, Bernoulli, mean µ2 = 0.8

• Goal : Maximize expected cumulative reward.

• Expected cumulative reward of policy π till T :=E
[∑T

t=1 r(t) | π
]
.

• Optimal policy π∗ := argmaxπ E
[∑T

t=1 r(t) | π
]
.

• Policy π∗ : Play the optimal arm with mean reward µ∗ :=maxa µa.

12

Performance Measure : Regret

• If the agent acts according to policy π∗ at t, then

it receives the optimal expected reward µ∗ :=maxa µa.

• If the agent acts according to policy π∗ from t = 1, . . . ,T , then

it receives the optimal expected cumulative reward = Tµ∗.

• Regret is a measure of the total mistake cost.

How far is the agent’s performance from the optimal performance?

• Regret = Rπ(T) := Tµ∗︸︷︷︸
Optimal expected cumulative reward

− E

[
T∑
t=1

r(t) | π

]
︸ ︷︷ ︸

Expected cumulative reward of π

• Minimizing regret ≡ Maximizing expected cumulative reward.

13

Performance Measure : Regret

• If the agent acts according to policy π∗ at t, then

it receives the optimal expected reward µ∗ :=maxa µa.

• If the agent acts according to policy π∗ from t = 1, . . . ,T , then

it receives the optimal expected cumulative reward = Tµ∗.

• Regret is a measure of the total mistake cost.

How far is the agent’s performance from the optimal performance?

• Regret = Rπ(T) := Tµ∗︸︷︷︸
Optimal expected cumulative reward

− E

[
T∑
t=1

r(t) | π

]
︸ ︷︷ ︸

Expected cumulative reward of π

• Minimizing regret ≡ Maximizing expected cumulative reward.

13

Performance Measure : Regret

• If the agent acts according to policy π∗ at t, then

it receives the optimal expected reward µ∗ :=maxa µa.

• If the agent acts according to policy π∗ from t = 1, . . . ,T , then

it receives the optimal expected cumulative reward = Tµ∗.

• Regret is a measure of the total mistake cost.

How far is the agent’s performance from the optimal performance?

• Regret = Rπ(T) := Tµ∗︸︷︷︸
Optimal expected cumulative reward

− E

[
T∑
t=1

r(t) | π

]
︸ ︷︷ ︸

Expected cumulative reward of π

• Minimizing regret ≡ Maximizing expected cumulative reward.

13

Performance Measure : Regret

• If the agent acts according to policy π∗ at t, then

it receives the optimal expected reward µ∗ :=maxa µa.

• If the agent acts according to policy π∗ from t = 1, . . . ,T , then

it receives the optimal expected cumulative reward = Tµ∗.

• Regret is a measure of the total mistake cost.

How far is the agent’s performance from the optimal performance?

• Regret = Rπ(T) := Tµ∗︸︷︷︸
Optimal expected cumulative reward

− E

[
T∑
t=1

r(t) | π

]
︸ ︷︷ ︸

Expected cumulative reward of π

• Minimizing regret ≡ Maximizing expected cumulative reward.

13

Performance Measure : Regret

• If the agent acts according to policy π∗ at t, then

it receives the optimal expected reward µ∗ :=maxa µa.

• If the agent acts according to policy π∗ from t = 1, . . . ,T , then

it receives the optimal expected cumulative reward = Tµ∗.

• Regret is a measure of the total mistake cost.

How far is the agent’s performance from the optimal performance?

• Regret = Rπ(T) := Tµ∗︸︷︷︸
Optimal expected cumulative reward

− E

[
T∑
t=1

r(t) | π

]
︸ ︷︷ ︸

Expected cumulative reward of π

• Minimizing regret ≡ Maximizing expected cumulative reward.

13

Decomposing Regret into Arms I

Suboptimality gap ∆a :=µ∗ − µa

Na(T) := Number of times arm a is played till T

=
T∑
t=1

I(a(t) = a) where a(t) is the arm selected at time t.

Lemma

Regret = R(T) =
K∑

a=1

∆a E[Na(T)].

14

Decomposing Regret into Arms I

Suboptimality gap ∆a :=µ∗ − µa

Na(T) := Number of times arm a is played till T

=
T∑
t=1

I(a(t) = a) where a(t) is the arm selected at time t.

Lemma

Regret = R(T) =
K∑

a=1

∆a E[Na(T)].

14

Decomposing Regret into Arms I

Suboptimality gap ∆a :=µ∗ − µa

Na(T) := Number of times arm a is played till T

=
T∑
t=1

I(a(t) = a) where a(t) is the arm selected at time t.

Lemma

Regret = R(T) =
K∑

a=1

∆a E[Na(T)].

14

Decomposing Regret into Arms I

Suboptimality gap ∆a :=µ∗ − µa

Na(T) := Number of times arm a is played till T

=
T∑
t=1

I(a(t) = a) where a(t) is the arm selected at time t.

Lemma

Regret = R(T) =
K∑

a=1

∆a E[Na(T)].

14

Decomposing Regret into Arms II

Lemma

Regret = R(T) =
K∑

a=1

∆a E[Na(T)].

R(T) = Tµ∗ − E

[
T∑
t=1

r(t)

]
=

T∑
t=1

µ∗ − E

[
T∑
t=1

r(t)

]

= E

[
T∑
t=1

[µ∗ − r(t)]

]
= E

[
T∑
t=1

∆a(t)

]

= E

[
T∑
t=1

K∑
a=1

I(a(t) = a)∆a

]
= E

[
K∑

a=1

∆a

T∑
t=1

I(a(t) = a)

]

= E

[
K∑

a=1

∆aNa(T)

]
=

K∑
a=1

∆a E[Na(T)].

15

Decomposing Regret into Arms II

Lemma

Regret = R(T) =
K∑

a=1

∆a E[Na(T)].

R(T) = Tµ∗ − E

[
T∑
t=1

r(t)

]

=
T∑
t=1

µ∗ − E

[
T∑
t=1

r(t)

]

= E

[
T∑
t=1

[µ∗ − r(t)]

]
= E

[
T∑
t=1

∆a(t)

]

= E

[
T∑
t=1

K∑
a=1

I(a(t) = a)∆a

]
= E

[
K∑

a=1

∆a

T∑
t=1

I(a(t) = a)

]

= E

[
K∑

a=1

∆aNa(T)

]
=

K∑
a=1

∆a E[Na(T)].

15

Decomposing Regret into Arms II

Lemma

Regret = R(T) =
K∑

a=1

∆a E[Na(T)].

R(T) = Tµ∗ − E

[
T∑
t=1

r(t)

]
=

T∑
t=1

µ∗ − E

[
T∑
t=1

r(t)

]

= E

[
T∑
t=1

[µ∗ − r(t)]

]
= E

[
T∑
t=1

∆a(t)

]

= E

[
T∑
t=1

K∑
a=1

I(a(t) = a)∆a

]
= E

[
K∑

a=1

∆a

T∑
t=1

I(a(t) = a)

]

= E

[
K∑

a=1

∆aNa(T)

]
=

K∑
a=1

∆a E[Na(T)].

15

Decomposing Regret into Arms II

Lemma

Regret = R(T) =
K∑

a=1

∆a E[Na(T)].

R(T) = Tµ∗ − E

[
T∑
t=1

r(t)

]
=

T∑
t=1

µ∗ − E

[
T∑
t=1

r(t)

]

= E

[
T∑
t=1

[µ∗ − r(t)]

]

= E

[
T∑
t=1

∆a(t)

]

= E

[
T∑
t=1

K∑
a=1

I(a(t) = a)∆a

]
= E

[
K∑

a=1

∆a

T∑
t=1

I(a(t) = a)

]

= E

[
K∑

a=1

∆aNa(T)

]
=

K∑
a=1

∆a E[Na(T)].

15

Decomposing Regret into Arms II

Lemma

Regret = R(T) =
K∑

a=1

∆a E[Na(T)].

R(T) = Tµ∗ − E

[
T∑
t=1

r(t)

]
=

T∑
t=1

µ∗ − E

[
T∑
t=1

r(t)

]

= E

[
T∑
t=1

[µ∗ − r(t)]

]
= E

[
T∑
t=1

∆a(t)

]

= E

[
T∑
t=1

K∑
a=1

I(a(t) = a)∆a

]
= E

[
K∑

a=1

∆a

T∑
t=1

I(a(t) = a)

]

= E

[
K∑

a=1

∆aNa(T)

]
=

K∑
a=1

∆a E[Na(T)].

15

Decomposing Regret into Arms II

Lemma

Regret = R(T) =
K∑

a=1

∆a E[Na(T)].

R(T) = Tµ∗ − E

[
T∑
t=1

r(t)

]
=

T∑
t=1

µ∗ − E

[
T∑
t=1

r(t)

]

= E

[
T∑
t=1

[µ∗ − r(t)]

]
= E

[
T∑
t=1

∆a(t)

]

= E

[
T∑
t=1

K∑
a=1

I(a(t) = a)∆a

]

= E

[
K∑

a=1

∆a

T∑
t=1

I(a(t) = a)

]

= E

[
K∑

a=1

∆aNa(T)

]
=

K∑
a=1

∆a E[Na(T)].

15

Decomposing Regret into Arms II

Lemma

Regret = R(T) =
K∑

a=1

∆a E[Na(T)].

R(T) = Tµ∗ − E

[
T∑
t=1

r(t)

]
=

T∑
t=1

µ∗ − E

[
T∑
t=1

r(t)

]

= E

[
T∑
t=1

[µ∗ − r(t)]

]
= E

[
T∑
t=1

∆a(t)

]

= E

[
T∑
t=1

K∑
a=1

I(a(t) = a)∆a

]
= E

[
K∑

a=1

∆a

T∑
t=1

I(a(t) = a)

]

= E

[
K∑

a=1

∆aNa(T)

]
=

K∑
a=1

∆a E[Na(T)].

15

Decomposing Regret into Arms II

Lemma

Regret = R(T) =
K∑

a=1

∆a E[Na(T)].

R(T) = Tµ∗ − E

[
T∑
t=1

r(t)

]
=

T∑
t=1

µ∗ − E

[
T∑
t=1

r(t)

]

= E

[
T∑
t=1

[µ∗ − r(t)]

]
= E

[
T∑
t=1

∆a(t)

]

= E

[
T∑
t=1

K∑
a=1

I(a(t) = a)∆a

]
= E

[
K∑

a=1

∆a

T∑
t=1

I(a(t) = a)

]

= E

[
K∑

a=1

∆aNa(T)

]

=
K∑

a=1

∆a E[Na(T)].

15

Decomposing Regret into Arms II

Lemma

Regret = R(T) =
K∑

a=1

∆a E[Na(T)].

R(T) = Tµ∗ − E

[
T∑
t=1

r(t)

]
=

T∑
t=1

µ∗ − E

[
T∑
t=1

r(t)

]

= E

[
T∑
t=1

[µ∗ − r(t)]

]
= E

[
T∑
t=1

∆a(t)

]

= E

[
T∑
t=1

K∑
a=1

I(a(t) = a)∆a

]
= E

[
K∑

a=1

∆a

T∑
t=1

I(a(t) = a)

]

= E

[
K∑

a=1

∆aNa(T)

]
=

K∑
a=1

∆a E[Na(T)].

15

Target Regret?

• Two arms with Bernoulli rewards, µ1 = 0.9 and µ2 = 0.8.

• Policy π : Play each arm with probability 0.5.

Regret of π =
K∑

a=1

∆a E[Na(T)]

= (0.9− 0.9)T2 + (0.9− 0.8)T2

= 0.05T (linear regret!).

• A policy with sub-linear regret is said to be learning.

• Goal : Construct an algorithm with sub-linear regret.

16

Target Regret?

• Two arms with Bernoulli rewards, µ1 = 0.9 and µ2 = 0.8.

• Policy π : Play each arm with probability 0.5.

Regret of π =
K∑

a=1

∆a E[Na(T)]

= (0.9− 0.9)T2 + (0.9− 0.8)T2

= 0.05T (linear regret!).

• A policy with sub-linear regret is said to be learning.

• Goal : Construct an algorithm with sub-linear regret.

16

Target Regret?

• Two arms with Bernoulli rewards, µ1 = 0.9 and µ2 = 0.8.

• Policy π : Play each arm with probability 0.5.

Regret of π =
K∑

a=1

∆a E[Na(T)]

= (0.9− 0.9)T2 + (0.9− 0.8)T2

= 0.05T (linear regret!).

• A policy with sub-linear regret is said to be learning.

• Goal : Construct an algorithm with sub-linear regret.

16

Target Regret?

• Two arms with Bernoulli rewards, µ1 = 0.9 and µ2 = 0.8.

• Policy π : Play each arm with probability 0.5.

Regret of π =
K∑

a=1

∆a E[Na(T)]

= (0.9− 0.9)T2 + (0.9− 0.8)T2

= 0.05T (linear regret!).

• A policy with sub-linear regret is said to be learning.

• Goal : Construct an algorithm with sub-linear regret.

16

Target Regret?

• Two arms with Bernoulli rewards, µ1 = 0.9 and µ2 = 0.8.

• Policy π : Play each arm with probability 0.5.

Regret of π =
K∑

a=1

∆a E[Na(T)]

= (0.9− 0.9)T2 + (0.9− 0.8)T2

= 0.05T (linear regret!).

• A policy with sub-linear regret is said to be learning.

• Goal : Construct an algorithm with sub-linear regret.

16

Solutions

How to Minimize Regret?

• Suboptimality gap ∆a :=µ∗ − µa.

• Na(T) := Number of times arm a is played till T =
T∑
t=1

I(a(t) = a).

• Regret R(T) =
K∑

a=1

∆a E[Na(T)].

• For large gaps ∆a, keep count Na(T) small.

• If mean reward µ’s are known, simply pick the arm with

µ∗ = argmaxa µa.

But they are unknown. So, build an estimate µ̂.

• µ̂a(t) = Empirical mean of arm a at time t

= Average of the received rewards from arm a till t

= 1
Na(t)

t∑
τ=1

(r(τ)|a(τ) = a).

17

How to Minimize Regret?

• Suboptimality gap ∆a :=µ∗ − µa.

• Na(T) := Number of times arm a is played till T =
T∑
t=1

I(a(t) = a).

• Regret R(T) =
K∑

a=1

∆a E[Na(T)].

• For large gaps ∆a, keep count Na(T) small.

• If mean reward µ’s are known, simply pick the arm with

µ∗ = argmaxa µa.

But they are unknown. So, build an estimate µ̂.

• µ̂a(t) = Empirical mean of arm a at time t

= Average of the received rewards from arm a till t

= 1
Na(t)

t∑
τ=1

(r(τ)|a(τ) = a).

17

How to Minimize Regret?

• Suboptimality gap ∆a :=µ∗ − µa.

• Na(T) := Number of times arm a is played till T =
T∑
t=1

I(a(t) = a).

• Regret R(T) =
K∑

a=1

∆a E[Na(T)].

• For large gaps ∆a, keep count Na(T) small.

• If mean reward µ’s are known, simply pick the arm with

µ∗ = argmaxa µa.

But they are unknown. So, build an estimate µ̂.

• µ̂a(t) = Empirical mean of arm a at time t

= Average of the received rewards from arm a till t

= 1
Na(t)

t∑
τ=1

(r(τ)|a(τ) = a).

17

How to Minimize Regret?

• Suboptimality gap ∆a :=µ∗ − µa.

• Na(T) := Number of times arm a is played till T =
T∑
t=1

I(a(t) = a).

• Regret R(T) =
K∑

a=1

∆a E[Na(T)].

• For large gaps ∆a, keep count Na(T) small.

• If mean reward µ’s are known, simply pick the arm with

µ∗ = argmaxa µa.

But they are unknown. So, build an estimate µ̂.

• µ̂a(t) = Empirical mean of arm a at time t

= Average of the received rewards from arm a till t

= 1
Na(t)

t∑
τ=1

(r(τ)|a(τ) = a).

17

Greedy Algorithm

Greedy : Choose each action once.

Then choose the action with the highest empirical mean.

Algorithm Greedy algorithm

1: for t = 1, . . . ,K do
2: Choose each arm once.
3: end for
4: for t = K + 1, . . . do
5: Compute empirical means µ̂1(t − 1), . . . , µ̂K (t − 1).
6: Select arm a(t) = argmaxa µ̂a(t − 1).
7: end for

Greedy algorithm has linear regret!

18

Greedy Algorithm

Greedy : Choose each action once.

Then choose the action with the highest empirical mean.

Algorithm Greedy algorithm

1: for t = 1, . . . ,K do
2: Choose each arm once.
3: end for
4: for t = K + 1, . . . do
5: Compute empirical means µ̂1(t − 1), . . . , µ̂K (t − 1).
6: Select arm a(t) = argmaxa µ̂a(t − 1).
7: end for

Greedy algorithm has linear regret!

18

Greedy Algorithm

Greedy : Choose each action once.

Then choose the action with the highest empirical mean.

Algorithm Greedy algorithm

1: for t = 1, . . . ,K do
2: Choose each arm once.
3: end for
4: for t = K + 1, . . . do
5: Compute empirical means µ̂1(t − 1), . . . , µ̂K (t − 1).
6: Select arm a(t) = argmaxa µ̂a(t − 1).
7: end for

Greedy algorithm has linear regret!

18

Why Does Greedy Fail?

Arm selection in greedy

Select arm a(t) = argmaxa µ̂a(t − 1).

• Not much exploration!

Explores once and then always makes the greedy choice.

• It can get stuck with a sub-optimal arm.

• When?

• the initial µ̂ of a sub-optimal arm is high, or

• the initial µ̂ of the optimal arm is low.

19

Why Does Greedy Fail?

Arm selection in greedy

Select arm a(t) = argmaxa µ̂a(t − 1).

• Not much exploration!

Explores once and then always makes the greedy choice.

• It can get stuck with a sub-optimal arm.

• When?

• the initial µ̂ of a sub-optimal arm is high, or

• the initial µ̂ of the optimal arm is low.

19

Why Does Greedy Fail?

Arm selection in greedy

Select arm a(t) = argmaxa µ̂a(t − 1).

• Not much exploration!

Explores once and then always makes the greedy choice.

• It can get stuck with a sub-optimal arm.

• When?

• the initial µ̂ of a sub-optimal arm is high, or

• the initial µ̂ of the optimal arm is low.

19

Adding Exploration to Greedy

ϵ-Greedy : With probability 1− ϵ,

choose the action with the highest empirical mean, and

with probability ϵ,

choose a random action.

Algorithm ϵ-Greedy algorithm

1: for t = 1, . . . ,K do
2: Choose each arm once.
3: end for
4: for t = K + 1, . . . do
5: Compute empirical means µ̂1(t − 1), . . . , µ̂K (t − 1).
6: With probability 1− ϵ,
7: select arm a(t) = argmaxa µ̂a(t − 1).
8: With probability ϵ,
9: select a random arm.

10: end for

ϵ-Greedy algorithm has linear regret!

20

Adding Exploration to Greedy

ϵ-Greedy : With probability 1− ϵ,

choose the action with the highest empirical mean, and

with probability ϵ,

choose a random action.

Algorithm ϵ-Greedy algorithm

1: for t = 1, . . . ,K do
2: Choose each arm once.
3: end for
4: for t = K + 1, . . . do
5: Compute empirical means µ̂1(t − 1), . . . , µ̂K (t − 1).
6: With probability 1− ϵ,
7: select arm a(t) = argmaxa µ̂a(t − 1).
8: With probability ϵ,
9: select a random arm.

10: end for

ϵ-Greedy algorithm has linear regret!

20

Adding Exploration to Greedy

ϵ-Greedy : With probability 1− ϵ,

choose the action with the highest empirical mean, and

with probability ϵ,

choose a random action.

Algorithm ϵ-Greedy algorithm

1: for t = 1, . . . ,K do
2: Choose each arm once.
3: end for
4: for t = K + 1, . . . do
5: Compute empirical means µ̂1(t − 1), . . . , µ̂K (t − 1).
6: With probability 1− ϵ,
7: select arm a(t) = argmaxa µ̂a(t − 1).
8: With probability ϵ,
9: select a random arm.

10: end for

ϵ-Greedy algorithm has linear regret!

20

Why Does ϵ-Greedy Fail?

Arm selection in ϵ-Greedy

With probability 1− ϵ,

select arm a(t) = argmaxa µ̂a(t − 1).

With probability ϵ,

select a random arm.

• It explores forever.

• Constant ϵ ensures expected regret of at least

K∑
a=1

ϵ

K
∆a

at each time step.

• Leading to expected cumulative regret of at least

(
ϵ
K

K∑
a=1

∆a

)
T .

21

Why Does ϵ-Greedy Fail?

Arm selection in ϵ-Greedy

With probability 1− ϵ,

select arm a(t) = argmaxa µ̂a(t − 1).

With probability ϵ,

select a random arm.

• It explores forever.

• Constant ϵ ensures expected regret of at least

K∑
a=1

ϵ

K
∆a

at each time step.

• Leading to expected cumulative regret of at least

(
ϵ
K

K∑
a=1

∆a

)
T .

21

Why Does ϵ-Greedy Fail?

Arm selection in ϵ-Greedy

With probability 1− ϵ,

select arm a(t) = argmaxa µ̂a(t − 1).

With probability ϵ,

select a random arm.

• It explores forever.

• Constant ϵ ensures expected regret of at least

K∑
a=1

ϵ

K
∆a

at each time step.

• Leading to expected cumulative regret of at least

(
ϵ
K

K∑
a=1

∆a

)
T .

21

Decaying ϵ-Greedy

• At time step t, explore with ϵt . A decay schedule for ϵ1, ϵ2,

• A schedule that has logarithmic regret :

c > 0

d = min
a,∆a>0

∆a

ϵt = min

{
1,

cK

d2t

}
• Requires advance knowledge of gaps ∆

• Can we achieve sub-linear regret without such knowledge?

22

Decaying ϵ-Greedy

• At time step t, explore with ϵt . A decay schedule for ϵ1, ϵ2,

• A schedule that has logarithmic regret :

c > 0

d = min
a,∆a>0

∆a

ϵt = min

{
1,

cK

d2t

}

• Requires advance knowledge of gaps ∆

• Can we achieve sub-linear regret without such knowledge?

22

Decaying ϵ-Greedy

• At time step t, explore with ϵt . A decay schedule for ϵ1, ϵ2,

• A schedule that has logarithmic regret :

c > 0

d = min
a,∆a>0

∆a

ϵt = min

{
1,

cK

d2t

}
• Requires advance knowledge of gaps ∆

• Can we achieve sub-linear regret without such knowledge?

22

Decaying ϵ-Greedy

• At time step t, explore with ϵt . A decay schedule for ϵ1, ϵ2,

• A schedule that has logarithmic regret :

c > 0

d = min
a,∆a>0

∆a

ϵt = min

{
1,

cK

d2t

}
• Requires advance knowledge of gaps ∆

• Can we achieve sub-linear regret without such knowledge?

22

Break

We start again after a break.

23

Before the break

• Goal : Find algorithms with sub-linear regret.

• Greedy : Linear regret

• ϵ-greedy : Linear regret

• Decaying ϵ-greedy : Logarithmic regret, but requires advance

knowledge of gaps ∆

• Can we achieve sub-linear regret without such knowledge?

24

Optimism Principle

25

Optimism Principle informally

“You should act as if you are in the best plausible world.”

Image source:UC Berkeley AI course, lecture 11

Shall we try the new place?

Optimist : Yes!!! Pessimist : No!!!

Optimism guarantees either optimality or exploration.

26

http://ai.berkeley.edu/lecture_slides.html

Optimism Principle informally

“You should act as if you are in the best plausible world.”

Image source:UC Berkeley AI course, lecture 11

Shall we try the new place?

Optimist : Yes!!! Pessimist : No!!!

Optimism guarantees either optimality or exploration.

26

http://ai.berkeley.edu/lecture_slides.html

Optimism Principle in Arm Selection

• Optimistic estimate of an arm = ‘Largest value it could plausibly be’.

• ‘Plausible’. The true mean cannot be much larger than the

empirical mean.

• Optimistic estimate of arm a = µ̂a(t − 1) + optimism term

27

Optimism Principle in Arm Selection

• Optimistic estimate of an arm = ‘Largest value it could plausibly be’.

• ‘Plausible’. The true mean cannot be much larger than the

empirical mean.

• Optimistic estimate of arm a = µ̂a(t − 1) + optimism term

27

Optimism Principle in Arm Selection

• Optimistic estimate of an arm = ‘Largest value it could plausibly be’.

• ‘Plausible’. The true mean cannot be much larger than the

empirical mean.

• Optimistic estimate of arm a = µ̂a(t − 1) + optimism term

Optimistic arm selection

Select arm a(t) = argmaxa [µ̂a(t − 1) + optimism term].

27

Optimism Principle in Arm Selection

• Optimistic estimate of an arm = ‘Largest value it could plausibly be’.

• ‘Plausible’. The true mean cannot be much larger than the

empirical mean.

• Optimistic estimate of arm a = µ̂a(t − 1) + optimism term

Similar to greedy, just with an addition of optimism term

Greedy arm selection

Select arm a(t) = argmaxa [µ̂a(t − 1)].

27

Optimism Principle in Arm Selection

• Optimistic estimate of an arm = ‘Largest value it could plausibly be’.

• ‘Plausible’. The true mean cannot be much larger than the

empirical mean.

• Optimistic estimate of arm a = µ̂a(t − 1) + optimism term

Optimistic arm selection

Select arm a(t) = argmaxa [µ̂a(t − 1) + optimism term].

27

A Crash Course in Concentration

of Measure

Concentration of Random Variables

Let Z1,Z2, . . . ,Zn be a sequence of of independent and identically dis-

tributed random variables with mean µ ∈ R and variance σ2 < ∞.

Empirical mean µ̂n =
1

n

n∑
t=1

Zt .

How close is µ̂n to µ?

We could use law of large numbers

lim
n→∞

µ̂n = µ

Law of large numbers requires n → ∞.

28

Concentration of Random Variables

Let Z1,Z2, . . . ,Zn be a sequence of of independent and identically dis-

tributed random variables with mean µ ∈ R and variance σ2 < ∞.

Empirical mean µ̂n =
1

n

n∑
t=1

Zt .

How close is µ̂n to µ?

We could use law of large numbers

lim
n→∞

µ̂n = µ

Law of large numbers requires n → ∞.

28

Concentration of Random Variables

Let Z1,Z2, . . . ,Zn be a sequence of of independent and identically dis-

tributed random variables with mean µ ∈ R and variance σ2 < ∞.

Empirical mean µ̂n =
1

n

n∑
t=1

Zt .

How close is µ̂n to µ?

We could use law of large numbers

lim
n→∞

µ̂n = µ

Law of large numbers requires n → ∞.

28

Preliminaries

Markov’s inequality

If Z is a non-negative random variable and c > 0,

P(Z ≥ c) ≤ E[Z]

c
.

Subgaussian

Z is σ2-subgaussian i.e. for all λ ∈ R

E[exp(λZ)] ≤ exp

(
λ2σ2

2

)

Which distributions are σ-subgaussian? Gaussian, Bernoulli

29

Preliminaries

Markov’s inequality

If Z is a non-negative random variable and c > 0,

P(Z ≥ c) ≤ E[Z]

c
.

Subgaussian

Z is σ2-subgaussian i.e. for all λ ∈ R

E[exp(λZ)] ≤ exp

(
λ2σ2

2

)

Which distributions are σ-subgaussian? Gaussian, Bernoulli

29

Preliminaries

Markov’s inequality

If Z is a non-negative random variable and c > 0,

P(Z ≥ c) ≤ E[Z]

c
.

Subgaussian

Z is σ2-subgaussian i.e. for all λ ∈ R

E[exp(λZ)] ≤ exp

(
λ2σ2

2

)

Which distributions are σ-subgaussian? Gaussian, Bernoulli

29

Recall : Distributional assumptions

Distributions X1, . . . ,XK are unknown, we may make some assumptions:

• Bernoulli with unknown mean µa ∈ [0, 1].

• Gaussian with unit variance unknown mean µa ∈ R.

• Sub-Gaussian with unit variance.

30

Preliminaries

Markov’s inequality

If Z is a non-negative random variable and c > 0,

P(Z ≥ c) ≤ E[Z]

c

Z is sub-Gaussian with σ2 = 1.

Subgaussian

Z is σ2-subgaussian i.e. for all λ ∈ R

E[exp(λZ)] ≤ exp

(
λ2σ2

2

)

Which distributions are σ-subgaussian? Gaussian, Bernoulli

31

Preliminaries

Markov’s inequality

If Z is a non-negative random variable and c > 0,

P(Z ≥ c) ≤ E[Z]

c

Subgaussian

Z is 1-subgaussian i.e. for all λ ∈ R

E[exp(λZ)] ≤ exp

(
λ2

2

)

Which distributions are σ-subgaussian? Gaussian, Bernoulli

31

Concentration of sub-Gaussian random variables

Chernoff-Hoeffding bound

Let Z1, . . .Zn are independent sub-Gaussian random variables

with mean µ and variance 1 and,

µ̂ =
1

n

n∑
t=1

Zt ,

then for any δ ∈ (0, 1),

P

(
µ̂ ≥ µ+

√
2 log(1/δ)

n

)
≤ δ

P

(
µ̂ ≤ µ−

√
2 log(1/δ)

n

)
≤ δ

32

Recall : optimism principle in arm selection

• Optimistic estimate of an arm = Largest value it could plausibly be.

• Optimistic estimate of arm a = µ̂a(t − 1) + optimism term

Optimistic arm selection

Select arm a(t) = argmaxa [µ̂a(t − 1) + optimism term].

Optimism term of the form
√

2 log(1/δ)
n ?

33

Proving Chernoff-Hoeffding bound

To prove: P
(
µ̂ ≥ µ+

√
2 log(1/δ)

n

)
≤ δ 1 P(Z ≥ c) ≤ E[Z]

c

2 E[exp(λZ)] ≤ exp
(

λ2

2

)
Proof:

P (µ̂ ≥ µ+ ϵ) = P

(
1

n

n∑
t=1

Zt ≥ µ+ ϵ

)

= P

(
n∑

t=1

(Zt − µ) ≥ ϵn

)

= P

(
exp

(
λ

n∑
t=1

(Zt − µ)

)
≥ exp (λϵn)

)
for some λ ∈ R

≤ exp (−λϵn) · E

[
exp

(
λ

n∑
t=1

(Zt − µ)

)]
by Markov’s inequality 1

= exp (−λϵn) · E

[
n∏

t=1

exp (λ (Zt − µ))

]
≤ exp (−λϵn) ·

n∏
t=1

exp
(
λ2/2

)
= exp

(
−λϵn +

λ2n

2

)
= exp

(
−ϵ2n

2

)
for λ = ϵ

P (µ̂ ≥ µ+ ϵ) ≤ exp

(
−ϵ2n

2

)
ϵ =

√
2 log(1/δ)

n
→ δ = exp

(
−ϵ2n

2

)

34

Proving Chernoff-Hoeffding bound

To prove: P
(
µ̂ ≥ µ+

√
2 log(1/δ)

n

)
≤ δ 1 P(Z ≥ c) ≤ E[Z]

c

2 E[exp(λZ)] ≤ exp
(

λ2

2

)
Proof:

P (µ̂ ≥ µ+ ϵ) = P

(
1

n

n∑
t=1

Zt ≥ µ+ ϵ

)
= P

(
n∑

t=1

(Zt − µ) ≥ ϵn

)

= P

(
exp

(
λ

n∑
t=1

(Zt − µ)

)
≥ exp (λϵn)

)
for some λ ∈ R

≤ exp (−λϵn) · E

[
exp

(
λ

n∑
t=1

(Zt − µ)

)]
by Markov’s inequality 1

= exp (−λϵn) · E

[
n∏

t=1

exp (λ (Zt − µ))

]
≤ exp (−λϵn) ·

n∏
t=1

exp
(
λ2/2

)
= exp

(
−λϵn +

λ2n

2

)
= exp

(
−ϵ2n

2

)
for λ = ϵ

P (µ̂ ≥ µ+ ϵ) ≤ exp

(
−ϵ2n

2

)
ϵ =

√
2 log(1/δ)

n
→ δ = exp

(
−ϵ2n

2

)

34

Proving Chernoff-Hoeffding bound

To prove: P
(
µ̂ ≥ µ+

√
2 log(1/δ)

n

)
≤ δ 1 P(Z ≥ c) ≤ E[Z]

c

2 E[exp(λZ)] ≤ exp
(

λ2

2

)
Proof:

P (µ̂ ≥ µ+ ϵ) = P

(
1

n

n∑
t=1

Zt ≥ µ+ ϵ

)
= P

(
n∑

t=1

(Zt − µ) ≥ ϵn

)

= P

(
exp

(
λ

n∑
t=1

(Zt − µ)

)
≥ exp (λϵn)

)
for some λ ∈ R

≤ exp (−λϵn) · E

[
exp

(
λ

n∑
t=1

(Zt − µ)

)]
by Markov’s inequality 1

= exp (−λϵn) · E

[
n∏

t=1

exp (λ (Zt − µ))

]
≤ exp (−λϵn) ·

n∏
t=1

exp
(
λ2/2

)
= exp

(
−λϵn +

λ2n

2

)
= exp

(
−ϵ2n

2

)
for λ = ϵ

P (µ̂ ≥ µ+ ϵ) ≤ exp

(
−ϵ2n

2

)
ϵ =

√
2 log(1/δ)

n
→ δ = exp

(
−ϵ2n

2

)

34

Proving Chernoff-Hoeffding bound

To prove: P
(
µ̂ ≥ µ+

√
2 log(1/δ)

n

)
≤ δ 1 P(Z ≥ c) ≤

E[Z]

c

2 E[exp(λZ)] ≤ exp
(

λ2

2

)
Proof:

P (µ̂ ≥ µ+ ϵ) = P

(
1

n

n∑
t=1

Zt ≥ µ+ ϵ

)
= P

(
n∑

t=1

(Zt − µ) ≥ ϵn

)

= P

(
exp

(
λ

n∑
t=1

(Zt − µ)

)
≥ exp (λϵn)

)
for some λ ∈ R

≤ exp (−λϵn) · E

[
exp

(
λ

n∑
t=1

(Zt − µ)

)]
by Markov’s inequality 1

= exp (−λϵn) · E

[
n∏

t=1

exp (λ (Zt − µ))

]
≤ exp (−λϵn) ·

n∏
t=1

exp
(
λ2/2

)
= exp

(
−λϵn +

λ2n

2

)
= exp

(
−ϵ2n

2

)
for λ = ϵ

P (µ̂ ≥ µ+ ϵ) ≤ exp

(
−ϵ2n

2

)
ϵ =

√
2 log(1/δ)

n
→ δ = exp

(
−ϵ2n

2

)

34

Proving Chernoff-Hoeffding bound

To prove: P
(
µ̂ ≥ µ+

√
2 log(1/δ)

n

)
≤ δ 1 P(Z ≥ c) ≤ E[Z]

c

2 E[exp(λZ)] ≤ exp
(

λ2

2

)
Proof:

P (µ̂ ≥ µ+ ϵ) = P

(
1

n

n∑
t=1

Zt ≥ µ+ ϵ

)
= P

(
n∑

t=1

(Zt − µ) ≥ ϵn

)

= P

(
exp

(
λ

n∑
t=1

(Zt − µ)

)
≥ exp (λϵn)

)
for some λ ∈ R

≤ exp (−λϵn) · E

[
exp

(
λ

n∑
t=1

(Zt − µ)

)]
by Markov’s inequality 1

= exp (−λϵn) · E

[
n∏

t=1

exp (λ (Zt − µ))

]

≤ exp (−λϵn) ·
n∏

t=1

exp
(
λ2/2

)
= exp

(
−λϵn +

λ2n

2

)
= exp

(
−ϵ2n

2

)
for λ = ϵ

P (µ̂ ≥ µ+ ϵ) ≤ exp

(
−ϵ2n

2

)
ϵ =

√
2 log(1/δ)

n
→ δ = exp

(
−ϵ2n

2

)

34

Proving Chernoff-Hoeffding bound

To prove: P
(
µ̂ ≥ µ+

√
2 log(1/δ)

n

)
≤ δ 1 P(Z ≥ c) ≤ E[Z]

c

2 E[exp(λZ)] ≤ exp

(
λ2

2

)

Proof:

P (µ̂ ≥ µ+ ϵ) = P

(
1

n

n∑
t=1

Zt ≥ µ+ ϵ

)
= P

(
n∑

t=1

(Zt − µ) ≥ ϵn

)

= P

(
exp

(
λ

n∑
t=1

(Zt − µ)

)
≥ exp (λϵn)

)
for some λ ∈ R

≤ exp (−λϵn) · E

[
exp

(
λ

n∑
t=1

(Zt − µ)

)]
by Markov’s inequality 1

= exp (−λϵn) · E

[
n∏

t=1

exp (λ (Zt − µ))

]
≤ exp (−λϵn) ·

n∏
t=1

exp
(
λ2/2

)

= exp

(
−λϵn +

λ2n

2

)
= exp

(
−ϵ2n

2

)
for λ = ϵ

P (µ̂ ≥ µ+ ϵ) ≤ exp

(
−ϵ2n

2

)
ϵ =

√
2 log(1/δ)

n
→ δ = exp

(
−ϵ2n

2

)

34

Proving Chernoff-Hoeffding bound

To prove: P
(
µ̂ ≥ µ+

√
2 log(1/δ)

n

)
≤ δ 1 P(Z ≥ c) ≤ E[Z]

c

2 E[exp(λZ)] ≤ exp
(

λ2

2

)
Proof:

P (µ̂ ≥ µ+ ϵ) = P

(
1

n

n∑
t=1

Zt ≥ µ+ ϵ

)
= P

(
n∑

t=1

(Zt − µ) ≥ ϵn

)

= P

(
exp

(
λ

n∑
t=1

(Zt − µ)

)
≥ exp (λϵn)

)
for some λ ∈ R

≤ exp (−λϵn) · E

[
exp

(
λ

n∑
t=1

(Zt − µ)

)]
by Markov’s inequality 1

= exp (−λϵn) · E

[
n∏

t=1

exp (λ (Zt − µ))

]
≤ exp (−λϵn) ·

n∏
t=1

exp
(
λ2/2

)
= exp

(
−λϵn +

λ2n

2

)

= exp

(
−ϵ2n

2

)
for λ = ϵ

P (µ̂ ≥ µ+ ϵ) ≤ exp

(
−ϵ2n

2

)
ϵ =

√
2 log(1/δ)

n
→ δ = exp

(
−ϵ2n

2

)

34

Proving Chernoff-Hoeffding bound

To prove: P
(
µ̂ ≥ µ+

√
2 log(1/δ)

n

)
≤ δ 1 P(Z ≥ c) ≤ E[Z]

c

2 E[exp(λZ)] ≤ exp
(

λ2

2

)
Proof:

P (µ̂ ≥ µ+ ϵ) = P

(
1

n

n∑
t=1

Zt ≥ µ+ ϵ

)
= P

(
n∑

t=1

(Zt − µ) ≥ ϵn

)

= P

(
exp

(
λ

n∑
t=1

(Zt − µ)

)
≥ exp (λϵn)

)
for some λ ∈ R

≤ exp (−λϵn) · E

[
exp

(
λ

n∑
t=1

(Zt − µ)

)]
by Markov’s inequality 1

= exp (−λϵn) · E

[
n∏

t=1

exp (λ (Zt − µ))

]
≤ exp (−λϵn) ·

n∏
t=1

exp
(
λ2/2

)
= exp

(
−λϵn +

λ2n

2

)
= exp

(
−ϵ2n

2

)
for λ = ϵ

P (µ̂ ≥ µ+ ϵ) ≤ exp

(
−ϵ2n

2

)
ϵ =

√
2 log(1/δ)

n
→ δ = exp

(
−ϵ2n

2

)

34

Proving Chernoff-Hoeffding bound

To prove: P
(
µ̂ ≥ µ+

√
2 log(1/δ)

n

)
≤ δ 1 P(Z ≥ c) ≤ E[Z]

c

2 E[exp(λZ)] ≤ exp
(

λ2

2

)
Proof:

P (µ̂ ≥ µ+ ϵ) = P

(
1

n

n∑
t=1

Zt ≥ µ+ ϵ

)
= P

(
n∑

t=1

(Zt − µ) ≥ ϵn

)

= P

(
exp

(
λ

n∑
t=1

(Zt − µ)

)
≥ exp (λϵn)

)
for some λ ∈ R

≤ exp (−λϵn) · E

[
exp

(
λ

n∑
t=1

(Zt − µ)

)]
by Markov’s inequality 1

= exp (−λϵn) · E

[
n∏

t=1

exp (λ (Zt − µ))

]
≤ exp (−λϵn) ·

n∏
t=1

exp
(
λ2/2

)
= exp

(
−λϵn +

λ2n

2

)
= exp

(
−ϵ2n

2

)
for λ = ϵ

P (µ̂ ≥ µ+ ϵ) ≤ exp

(
−ϵ2n

2

)

ϵ =

√
2 log(1/δ)

n
→ δ = exp

(
−ϵ2n

2

)

34

Proving Chernoff-Hoeffding bound

To prove: P
(
µ̂ ≥ µ+

√
2 log(1/δ)

n

)
≤ δ 1 P(Z ≥ c) ≤ E[Z]

c

2 E[exp(λZ)] ≤ exp
(

λ2

2

)
Proof:

P (µ̂ ≥ µ+ ϵ) = P

(
1

n

n∑
t=1

Zt ≥ µ+ ϵ

)
= P

(
n∑

t=1

(Zt − µ) ≥ ϵn

)

= P

(
exp

(
λ

n∑
t=1

(Zt − µ)

)
≥ exp (λϵn)

)
for some λ ∈ R

≤ exp (−λϵn) · E

[
exp

(
λ

n∑
t=1

(Zt − µ)

)]
by Markov’s inequality 1

= exp (−λϵn) · E

[
n∏

t=1

exp (λ (Zt − µ))

]
≤ exp (−λϵn) ·

n∏
t=1

exp
(
λ2/2

)
= exp

(
−λϵn +

λ2n

2

)
= exp

(
−ϵ2n

2

)
for λ = ϵ

P (µ̂ ≥ µ+ ϵ) ≤ exp

(
−ϵ2n

2

)
ϵ =

√
2 log(1/δ)

n
→ δ = exp

(
−ϵ2n

2

)
34

Upper Confidence Bound (UCB)

algorithm

Upper Confidence Bound (UCB) : Choose Arms Optimistically

• Optimistic estimate of arm a = µ̂a(t − 1) + optimism term

• Optimism term of the form
√

2 log(1/δ)
n ?

Optimistic arm selection

Select arm a(t) = argmaxa [µ̂a(t − 1) + optimism term].

35

Upper Confidence Bound (UCB) : Choose Arms Optimistically

• Optimistic estimate of arm a = µ̂a(t − 1) + optimism term

• UCB estimate of arm a = µ̂a(t − 1) +
√

2 log(1/δ)
Na(t−1)

UCB arm selection

Select arm a(t) = argmaxa

[
µ̂a(t − 1) +

√
2 log(1/δ)
Na(t−1)

]
.

35

Upper Confidence Bound (UCB) : Choose arms optimally

Algorithm UCB algorithm Auer et al. [2002]

Parameters : Confidence level δ
1: for t = 1, . . . ,K do
2: Choose each arm once.
3: end for
4: for t = K + 1, . . . do
5: Compute empirical means µ̂1(t − 1), . . . , µ̂K (t − 1).

6: Select arm a(t) = argmaxa

[
µ̂a(t − 1) +

√
2 log(1/δ)
Na(t−1)

]
.

7: end for

36

Regret bound for UCB

Theorem

The expected cumulative regret of UCB after T time steps is

Regret = R(T) ≤
∑

a:∆a>0

16 log(T)

∆a
+ 3∆a.

Logarithmic regret

37

Proving the Regret Bound for UCB : Roadmap

• Decomposition of regret over the arms.

• On a ‘good’ event, prove that sub-optimal arms are not played too

often.

• Prove that the ‘good’ event occurs with a high probability.

38

Proving the Regret Bound for UCB : Roadmap

• Decomposition of regret over the arms.

• On a ‘good’ event, prove that sub-optimal arms are not played too

often.

• Prove that the ‘good’ event occurs with a high probability.

38

Proving the Regret Bound for UCB : Roadmap

• Decomposition of regret over the arms.

• On a ‘good’ event, prove that sub-optimal arms are not played too

often.

• Prove that the ‘good’ event occurs with a high probability.

38

Proving the Regret Bound for UCB : Roadmap

• Decomposition of regret over the arms.

• Decomposition of regret over the arms. R(T) =
K∑

a=1

∆a E[Na(T)]

where ∆a :=µ∗ − µa and Na(T) :=
T∑
t=1

I(a(t) = a)

• On a ‘good’ event, prove that sub-optimal arms are not played too

often.

• Prove that the ‘good’ event occurs with a high probability.

38

Proving the Regret Bound for UCB : I

UCB arm selection

Select arm a(t) = argmaxa

[
µ̂a(t − 1) +

√
2 log(1/δ)
Na(t−1)

]
.

‘Good event’: When UCB performs well.

Fix a sub-optimal arm a. Assume for all t,

Empirical estimate of sub-optimal arm a is not too big.

µ̂a(t − 1) ≤ µa +

√
2 log(1/δ)

Na(t − 1)
.

Empirical estimate of optimal arm a∗ is not too small.

µ̂a∗(t − 1) ≥ µ∗ −

√
2 log(1/δ)

Na∗(t − 1)
.

39

Proving the Regret Bound for UCB : I

UCB arm selection

Select arm a(t) = argmaxa

[
µ̂a(t − 1) +

√
2 log(1/δ)
Na(t−1)

]
.

‘Good event’: When UCB performs well.

Fix a sub-optimal arm a. Assume for all t,

Empirical estimate of sub-optimal arm a is not too big.

µ̂a(t − 1) ≤ µa +

√
2 log(1/δ)

Na(t − 1)
.

Empirical estimate of optimal arm a∗ is not too small.

µ̂a∗(t − 1) ≥ µ∗ −

√
2 log(1/δ)

Na∗(t − 1)
.

39

Proving the Regret Bound for UCB : I

UCB arm selection

Select arm a(t) = argmaxa

[
µ̂a(t − 1) +

√
2 log(1/δ)
Na(t−1)

]
.

‘Good event’: When UCB performs well.

Fix a sub-optimal arm a. Assume for all t,

Empirical estimate of sub-optimal arm a is not too big.

µ̂a(t − 1) ≤ µa +

√
2 log(1/δ)

Na(t − 1)
.

Empirical estimate of optimal arm a∗ is not too small.

µ̂a∗(t − 1) ≥ µ∗ −

√
2 log(1/δ)

Na∗(t − 1)
.

39

Proving the Regret Bound for UCB : I

UCB arm selection

Select arm a(t) = argmaxa

[
µ̂a(t − 1) +

√
2 log(1/δ)
Na(t−1)

]
.

‘Good event’: When UCB performs well.

Fix a sub-optimal arm a. Assume for all t,

Empirical estimate of sub-optimal arm a is not too big.

µ̂a(t − 1) ≤ µa +

√
2 log(1/δ)

Na(t − 1)
.

Empirical estimate of optimal arm a∗ is not too small.

µ̂a∗(t − 1) ≥ µ∗ −

√
2 log(1/δ)

Na∗(t − 1)
.

39

Proving the Regret Bound for UCB : I

UCB arm selection

Select arm a(t) = argmaxa

[
µ̂a(t − 1) +

√
2 log(1/δ)
Na(t−1)

]
.

‘Good event’: When UCB performs well.

Fix a sub-optimal arm a. Assume for all t,

Empirical estimate of sub-optimal arm a is not too big.

µ̂a(t − 1) ≤ µa +

√
2 log(1/δ)

Na(t − 1)
.

Empirical estimate of optimal arm a∗ is not too small.

µ̂a∗(t − 1) ≥ µ∗ −

√
2 log(1/δ)

Na∗(t − 1)
.

39

Proving the Regret Bound for UCB : II

UCB arm selection

Select arm a(t) = argmaxa

[
µ̂a(t − 1) +

√
2 log(1/δ)
Na(t−1)

]
.

1 µa +
√

2 log(1/δ)
Na(t−1) ≥ µ̂a(t − 1),

2 µ̂a∗(t − 1) +
√

2 log(1/δ)
Na∗ (t−1) ≥ µ∗.

At time t, the algorithm selects a only if,

µa + 2

√
2 log(1/δ)

Na(t − 1)
≥ µ̂a(t − 1) +

√
2 log(1/δ)

Na(t − 1)
using 1

≥ µ̂a∗(t − 1) +

√
2 log(1/δ)

Na∗(t − 1)

≥ µ∗ = µa +∆a using 2

��µa + 2

√
2 log(1/δ)

Na(t − 1)
≥ ��µa +∆a

40

Proving the Regret Bound for UCB : II

UCB arm selection

Select arm a(t) = argmaxa

[
µ̂a(t − 1) +

√
2 log(1/δ)
Na(t−1)

]
.

1 µa +
√

2 log(1/δ)
Na(t−1) ≥ µ̂a(t − 1),

2 µ̂a∗(t − 1) +
√

2 log(1/δ)
Na∗ (t−1) ≥ µ∗.

At time t, the algorithm selects a only if,

µa + 2

√
2 log(1/δ)

Na(t − 1)
≥ µ̂a(t − 1) +

√
2 log(1/δ)

Na(t − 1)
using 1

≥ µ̂a∗(t − 1) +

√
2 log(1/δ)

Na∗(t − 1)

≥ µ∗ = µa +∆a using 2

��µa + 2

√
2 log(1/δ)

Na(t − 1)
≥ ��µa +∆a

40

Proving the Regret Bound for UCB : II

UCB arm selection

Select arm a(t) = argmaxa

[
µ̂a(t − 1) +

√
2 log(1/δ)
Na(t−1)

]
.

1 µa +
√

2 log(1/δ)
Na(t−1) ≥ µ̂a(t − 1),

2 µ̂a∗(t − 1) +
√

2 log(1/δ)
Na∗ (t−1) ≥ µ∗.

At time t, the algorithm selects a only if,

µa + 2

√
2 log(1/δ)

Na(t − 1)
≥ µ̂a(t − 1) +

√
2 log(1/δ)

Na(t − 1)
using 1

≥ µ̂a∗(t − 1) +

√
2 log(1/δ)

Na∗(t − 1)

≥ µ∗ = µa +∆a using 2

��µa + 2

√
2 log(1/δ)

Na(t − 1)
≥ ��µa +∆a

40

Proving the Regret Bound for UCB : II

UCB arm selection

Select arm a(t) = argmaxa

[
µ̂a(t − 1) +

√
2 log(1/δ)
Na(t−1)

]
.

1 µa +
√

2 log(1/δ)
Na(t−1) ≥ µ̂a(t − 1),

2 µ̂a∗(t − 1) +
√

2 log(1/δ)
Na∗ (t−1) ≥ µ∗.

At time t, the algorithm selects a only if,

µa + 2

√
2 log(1/δ)

Na(t − 1)
≥ µ̂a(t − 1) +

√
2 log(1/δ)

Na(t − 1)
using 1

≥ µ̂a∗(t − 1) +

√
2 log(1/δ)

Na∗(t − 1)

≥ µ∗

= µa +∆a using 2

��µa + 2

√
2 log(1/δ)

Na(t − 1)
≥ ��µa +∆a

40

Proving the Regret Bound for UCB : II

UCB arm selection

Select arm a(t) = argmaxa

[
µ̂a(t − 1) +

√
2 log(1/δ)
Na(t−1)

]
.

1 µa +
√

2 log(1/δ)
Na(t−1) ≥ µ̂a(t − 1),

2 µ̂a∗(t − 1) +
√

2 log(1/δ)
Na∗ (t−1) ≥ µ∗.

At time t, the algorithm selects a only if,

µa + 2

√
2 log(1/δ)

Na(t − 1)
≥ µ̂a(t − 1) +

√
2 log(1/δ)

Na(t − 1)
using 1

≥ µ̂a∗(t − 1) +

√
2 log(1/δ)

Na∗(t − 1)

≥ µ∗ = µa +∆a using 2

��µa + 2

√
2 log(1/δ)

Na(t − 1)
≥ ��µa +∆a

40

Proving the Regret Bound for UCB : III

If the good event occurs,

at time t, the algorithm selects a only if,

2

√
2 log(1/δ)

Na(t − 1)
≥ ∆a

Na(t − 1) ≤ 8 log(1/δ)

∆2
a

So assuming the good event occurs,

Na(T) ≤ 8 log(1/δ)

∆2
a

+ 1.

41

Probability (Good Event Does Not Occur)

The good event,

µa +

√
2 log(1/δ)

Na(t − 1)
≥ µ̂a(t − 1)

µ̂a∗(t − 1) +

√
2 log(1/δ)

Na∗(t − 1)
≥ µ∗

42

Probability (Good Event Does Not Occur)

The good event does not occur,

µa +

√
2 log(1/δ)

Na(t − 1)
≤ µ̂a(t − 1)

µ̂a∗(t − 1) +

√
2 log(1/δ)

Na∗(t − 1)
≤ µ∗

42

Probability (Good Event Does Not Occur)

The good event does not occur at time step t,

µa +

√
2 log(1/δ)

Na(t − 1)
≤ µ̂a(t − 1)

µ̂a∗(t − 1) +

√
2 log(1/δ)

Na∗(t − 1)
≤ µ∗

Chernoff-Hoeffding bound shows that

P

(
µ̂a(t − 1) ≥ µa +

√
2 log(1/δ)

Na(t − 1)

)
≤ δ

P

(
µ̂a∗(t − 1) ≤ µ∗ −

√
2 log(1/δ)

Na∗(t − 1)

)
≤ δ

42

Probability (Good Event Does Not Occur)

The good event does not occur at some step t, 1 ≤ t ≤ T ,

µa +

√
2 log(1/δ)

Na(t − 1)
≤ µ̂a(t − 1)

µ̂a∗(t − 1) +

√
2 log(1/δ)

Na∗(t − 1)
≤ µ∗

Chernoff-Hoeffding bound combined with union bound

P(∪iEi) ≤
∑

i P(Ei),

P

(
∃τ ≤ T : µ̂a(τ − 1) ≥ µ+

√
2 log(1/δ)

Na(τ − 1)

)
≤ δT

P

(
∃τ ≤ T : µ̂a∗(τ − 1) ≤ µ∗ −

√
2 log(1/δ)

Na∗(τ − 1)

)
≤ δT

42

Proving the Regret Bound for UCB : IV

1 Na(T) ≤ 8 log(1/δ)
∆2

a
+ 1 when the good event occurs.

2 Probability (good event does not occur) ≤ 2δT .

Using the decomposition of regret R(T) over the arms,

R(T) =

K∑
a=1

∆a E[Na(T)]

≤
∑

a:∆a>0

∆a

[
8 log(1/δ)

∆2
a

+ 1 + 2δT · T
]

≤
∑

a:∆a>0

∆a

[
8 log(T 2)

∆2
a

+ 1 + 2
1

T 2
T 2

]
choosing δ = 1/T 2,

=
∑

a:∆a>0

16 log(T)

∆a
+ 3∆a.

43

Proving the Regret Bound for UCB : IV

1 Na(T) ≤ 8 log(1/δ)
∆2

a
+ 1 when the good event occurs.

2 Probability (good event does not occur) ≤ 2δT .

Using the decomposition of regret R(T) over the arms,

R(T) =

K∑
a=1

∆a E[Na(T)]

≤
∑

a:∆a>0

∆a

[
8 log(1/δ)

∆2
a

+ 1 + 2δT · T
]

≤
∑

a:∆a>0

∆a

[
8 log(T 2)

∆2
a

+ 1 + 2
1

T 2
T 2

]
choosing δ = 1/T 2,

=
∑

a:∆a>0

16 log(T)

∆a
+ 3∆a.

43

Proving the Regret Bound for UCB : IV

1 Na(T) ≤ 8 log(1/δ)
∆2

a
+ 1 when the good event occurs.

2 Probability (good event does not occur) ≤ 2δT .

Using the decomposition of regret R(T) over the arms,

R(T) =

K∑
a=1

∆a E[Na(T)]

≤
∑

a:∆a>0

∆a

[
8 log(1/δ)

∆2
a

+ 1 + 2δT · T
]

≤
∑

a:∆a>0

∆a

[
8 log(T 2)

∆2
a

+ 1 + 2
1

T 2
T 2

]
choosing δ = 1/T 2,

=
∑

a:∆a>0

16 log(T)

∆a
+ 3∆a.

43

Proving the Regret Bound for UCB : IV

1 Na(T) ≤ 8 log(1/δ)
∆2

a
+ 1 when the good event occurs.

2 Probability (good event does not occur) ≤ 2δT .

Using the decomposition of regret R(T) over the arms,

R(T) =

K∑
a=1

∆a E[Na(T)]

≤
∑

a:∆a>0

∆a

[
8 log(1/δ)

∆2
a

+ 1 + 2δT · T
]

≤
∑

a:∆a>0

∆a

[
8 log(T 2)

∆2
a

+ 1 + 2
1

T 2
T 2

]
choosing δ = 1/T 2,

=
∑

a:∆a>0

16 log(T)

∆a
+ 3∆a.

43

Regret Bound for UCB

Theorem

The expected cumulative regret of UCB after T time steps is

Regret = R(T) ≤
∑

a:∆a>0

16 log(T)

∆a
+ 3∆a.

Distribution-dependent regret bound.

44

Regret Bound for UCB

Theorem

The expected cumulative regret of UCB after T time steps is

Regret = R(T) ≤
∑

a:∆a>0

16 log(T)

∆a
+ 3∆a.

Distribution-dependent regret bound.

44

Distribution-free Regret Bound for UCB

R(T) =
∑

a:∆a>0

∆a E[Na(T)]

=
∑

a:∆a>0,∆a≤∆

∆a E[Na(T)] +
∑

a:∆a>∆

∆a E[Na(T)]

≤ ∆T +
∑

a:∆a>∆

16 log(T)

∆a
+ 3∆a

≤ O(
√
KT log(T)) using ∆ =

√
K logT/T .

A primer on big-oh notation O(.)

45

https://en.wikipedia.org/wiki/Big_O_notation

Distribution-free Regret Bound for UCB

R(T) =
∑

a:∆a>0

∆a E[Na(T)]

=
∑

a:∆a>0,∆a≤∆

∆a E[Na(T)] +
∑

a:∆a>∆

∆a E[Na(T)]

≤ ∆T +
∑

a:∆a>∆

16 log(T)

∆a
+ 3∆a

≤ O(
√
KT log(T)) using ∆ =

√
K logT/T .

A primer on big-oh notation O(.)

45

https://en.wikipedia.org/wiki/Big_O_notation

Distribution-free Regret Bound for UCB

R(T) =
∑

a:∆a>0

∆a E[Na(T)]

=
∑

a:∆a>0,∆a≤∆

∆a E[Na(T)] +
∑

a:∆a>∆

∆a E[Na(T)]

≤ ∆T +
∑

a:∆a>∆

16 log(T)

∆a
+ 3∆a

≤ O(
√
KT log(T)) using ∆ =

√
K logT/T .

A primer on big-oh notation O(.)

45

https://en.wikipedia.org/wiki/Big_O_notation

Distribution-free Regret Bound for UCB

R(T) =
∑

a:∆a>0

∆a E[Na(T)]

=
∑

a:∆a>0,∆a≤∆

∆a E[Na(T)] +
∑

a:∆a>∆

∆a E[Na(T)]

≤ ∆T +
∑

a:∆a>∆

16 log(T)

∆a
+ 3∆a

≤ O(
√

KT log(T)) using ∆ =
√
K logT/T .

A primer on big-oh notation O(.)

45

https://en.wikipedia.org/wiki/Big_O_notation

Summary

• Stationary stochastic bandits.

• Why greedy and ϵ-greedy does not work?

• A short introduction to concentration of measure.

• UCB algorithm and its regret bound.

46

Summary

• Stationary stochastic bandits.

• Why greedy and ϵ-greedy does not work?

• A short introduction to concentration of measure.

• UCB algorithm and its regret bound.

46

Summary

• Stationary stochastic bandits.

• Why greedy and ϵ-greedy does not work?

• A short introduction to concentration of measure.

• UCB algorithm and its regret bound.

46

Summary

• Stationary stochastic bandits.

• Why greedy and ϵ-greedy does not work?

• A short introduction to concentration of measure.

• UCB algorithm and its regret bound.

46

Next lecture

• Bayesian way of looking at bandits.

• Leading to another algorithm and its regret bound.

47

Next lecture

• Bayesian way of looking at bandits.

• Leading to another algorithm and its regret bound.

47

References i

References

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis

of the multiarmed bandit problem. Mach. Learn., 47(2–3):235–256,

may 2002. ISSN 0885-6125. doi: 10.1023/A:1013689704352. URL

https://doi.org/10.1023/A:1013689704352.

48

https://doi.org/10.1023/A:1013689704352

	Introduction
	Mathematical setting
	Solutions
	A Crash Course in Concentration of Measure
	Upper Confidence Bound (UCB) algorithm
	References

