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A Quick Recap of Lecture 1

Introduction to reinforcement learning.

Mathematical formulation of a reinforcement learning problem.

Formulating RL with multi-armed bandits and its variants.

Formulating RL with Markov decision processes.



Lecture 2: QOutline

e Introduction to Bandits and Mathematical Setting
e Greedy: A Simple Solution (and why it does not work?)
e Acting optimistically : Upper Confidence Bound algorithm.



Introduction
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»¢ What's in a Name? Why “Bandits”?

A single-armed bandit.
One arm = one choice.
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A single-armed bandit. A multi-armed bandit.
One arm = one choice. Multiple arms = multiple choices.



Multi-Armed Bandits
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e Agent faces repeated choice among K different actions/arms.
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Multi-Armed Bandits

Image source : Microsoft research

Agent faces repeated choice among K different actions/arms.

Agent acts according to some policy 7.
At each time step t, the agent selects an action and then receives a

numerical reward for that action.(Bandit feedback).
e Agent learns only through received rewards. No other way to learn.
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Multi-Armed Bandits

Image source : Microsoft research

Agent faces repeated choice among K different actions/arms.

Agent acts according to some policy 7.

At each time step t, the agent selects an action and then receives a
numerical reward for that action.(Bandit feedback).

e Agent learns only through received rewards. No other way to learn.
Goal : Maximize the sum of received rewards.
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Exploration/Exploitation Dilemma

Image source: UC Berkeley Al course, lecture 11

e Exploit. Choose actions tried in the past and found to be rewarding.
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° . Choose unexplored actions to see if they are more
rewarding.
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Exploration/Exploitation Dilemma

Image source: UC Berkeley Al course, lecture 11

e Exploit. Choose actions tried in the past and found to be rewarding.

° . Choose unexplored actions to see if they are more
rewarding.

e Neither exploration nor exploitation can be pursued exclusively.

e A good solution balances exploration and exploitation.
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Applications!

Clinical trials

Recommendation systems

Ad placement
e Dynamic pricing

e And many more ...



Mathematical setting
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Stationary Stochastic Bandits

Number of arms = K.

Reward for arm a ~ X, with mean p,.
e X1, X5, ... Xk are unknown stationary distributions.

At each time step t =1,..., T, the agent,

e acts according to a policy m and chooses an arm a(t), and

o receives a numerical reward r(t) ~ Xy).

T is called the horizon.
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Distributional Assumptions?

Distributions Xj, ..., Xk are unknown to the agent, but we may make
some assumptions. E.g.,

e X, is Bernoulli with unknown mean g, € [0, 1].

e X, is Gaussian with unit variance and unknown mean pu, € R.

®)

Qo

Which assumption do we make? We will see in due time.



Stationary Stochastic Bandits: Example

a1, Bernoulli, mean 1 = 0.9 az, Bernoulli, mean pu> = 0.8
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Stationary Stochastic Bandits: Example

a1, Bernoulli, mean 1 = 0.9 az, Bernoulli, mean pu> = 0.8

Number of arms = K = 2.

Reward for arm a; ~ Bernoulli with mean p; = 0.9.

Reward for arm a; ~ Bernoulli with mean p, = 0.8

e Agent policy m: Choose arms alternatingly.

e The agent,
e at t =1,3,..., picks arm a1, reward r(t) ~ Bernoulli with 1 = 0.9;
e at t =2,4,..., picks arm ay, reward r(t) ~ Bernoulli with 1o = 0.8.

10



Random Variables, Expectation and Indicator Function

e Random variable: A quantity which depends on a
random /stochastic process.
e.g., outcome of a coin toss, reward drawn from a stochastic

distribution.
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stochastic process.
e Expectation is linear i.e.,

Elxg +x + -+ x] = Epxq] + Epxo] + - - - + E[x,].

1, if E is true,

e Indicator function I(E) =
0, otherwise.
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Random Variables, Expectation and Indicator Function

e Random variable: A quantity which depends on a
random /stochastic process.
e.g., outcome of a coin toss, reward drawn from a stochastic
distribution.
e Expectation of a random variable x = E[x] =",/ - P(x = /).
e Expected value of a random variable is the mean of the related
stochastic process.
e Expectation is linear i.e.,

Elxg +x + -+ x] = Epxq] + Epxo] + - - - + E[x,].

) i 1, if E is true,
e Indicator function I(E) =
0, otherwise.
T
e.g., count of occurrences of E = ZI[(E).
t=1
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Optimal Policy

a1, Bernoulli, mean p; = 0.9 az, Bernoulli, mean pu> = 0.8

e Goal: Maximize expected cumulative reward.

e Expected cumulative reward of policy 7 till T =1 Z;l r(t) | ﬂ']
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Optimal Policy

a1, Bernoulli, mean p; = 0.9 az, Bernoulli, mean pu> = 0.8

Goal: Maximize expected cumulative reward.

Expected cumulative reward of policy 7 till T .= {Z;l r(t) | ﬂ']

Optimal policy 7, :=argmax,E [Z;l r(t) | ﬁ] .

e Policy m, : Play the optimal arm with mean reward . :=max, 5.
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Performance Measure: Regret

e If the agent acts according to policy 7. at t, then
it receives the optimal expected reward (1. = max, fi5.
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Performance Measure: Regret

e If the agent acts according to policy 7. at t, then
it receives the optimal expected reward (1. = max, fi5.

e If the agent acts according to policy 7w, from t =1,..., T, then
it receives the optimal expected cumulative reward = T ...

e Regret is a measure of the total mistake cost.

How far is the agent’s performance from the optimal performance?
T
e Regret = R, (T) = T s - E Z r(t)|m
" t=1

Optimal expected cumulative reward

Expected cumulative reward of 7

e Minimizing regret = Maximizing expected cumulative reward.
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Decomposing Regret into Arms |

Suboptimality gap A, = s —
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Decomposing Regret into Arms |l

K
Regret = R(T) =Y A, E] ].
a=1




Target Regret?

e Two arms with Bernoulli rewards, ;1 = 0.9 and p, = 0.8.
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Target Regret?

e Two arms with Bernoulli rewards, ;1 = 0.9 and p, = 0.8.

e Policy m: Play each arm with probability 0.5.

K
Regret of 7= > A, E[N,(T)]

a=1
=(0.9-09)F +(0.9-0.8)7
=0.05T (linear regret!).
e A policy with sub-linear regret is said to be learning.

e Goal: Construct an algorithm with sub-linear regret.

-
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How to Minimize Regret?

e Suboptimality gap A, = . — 2.

° := Number of times arm a is played till T =

e Regret \}(T ZA E[ ].
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° := Number of times arm a is played till T =
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e For large gaps Aa, keep count small.

If mean reward p's are known, simply pick the arm with
[« = arg max, fia.
But they are unknown. So, build an estimate /..
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How to Minimize Regret?

e Suboptimality gap A, = . — 2.

° := Number of times arm a is played till T =

e Regret \}(T ZA E[ ].

e For large gaps Aa, keep count small.

e If mean reward pu's are known, simply pick the arm with
[« = arg max, fia.
But they are unknown. So, build an estimate /..

e /i,(t) = Empirical mean of arm a at time ¢

= Average of the received rewards from arm a till t
t

Mg 2 (r(n)la(r) = a).

=i},

17



Greedy Algorithm

Greedy : Choose each action once.
Then choose the action with the highest empirical mean.
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Greedy : Choose each action once.
Then choose the action with the highest empirical mean.

Algorithm Greedy algorithm

1: fort=1,...,K do

2: Choose each arm once.

3: end for

4. fort=K+1,... do

5: Compute empirical means fi;(t — 1),..., ik (t —1).
6: Select arm a(t) = arg max, fi,(t — 1).

7: end for
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Then choose the action with the highest empirical mean.

Algorithm Greedy algorithm

1: fort=1,...,K do

2: Choose each arm once.

3: end for

4. fort=K+1,... do

5: Compute empirical means fi;(t — 1),..., ik (t —1).
6: Select arm a(t) = arg max, fi,(t — 1).

7: end for

Greedy algorithm has linear regret! @
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Arm selection in greedy

Select arm a(t) = arg max, fia(t — 1).

e Not much exploration!
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Why Does Greedy Fail?

Arm selection in greedy

Select arm a(t) = arg max, fia(t — 1).

e Not much exploration!

Explores once and then always makes the greedy choice.
e It can get stuck with a sub-optimal arm.
e When?

e the initial i of a sub-optimal arm is high, or
e the initial /i of the optimal arm is low.



Adding Exploration to Greedy

e-Greedy : With probability 1 — ¢,
choose the action with the highest empirical mean, and
with probability €,
choose a random action.
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e-Greedy : With probability 1 — ¢,
choose the action with the highest empirical mean, and
with probability €,
choose a random action.

Algorithm ¢-Greedy algorithm
1: fort=1,...,K do

2: Choose each arm once.
3: end for

4. fort=K+1,... do

5: Compute empirical means fi1(t — 1),..., fix(t —1).
6: With probability 1 — ¢,
7.
8

select arm a(t) = arg max, fi,(t — 1).
: With probability e,
9: select a random arm.
10: end for
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3: end for
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5: Compute empirical means fi1(t — 1),..., fix(t —1).
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7.
8

select arm a(t) = arg max, fi,(t — 1).
: With probability e,
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With probability 1 — ¢,

select arm a(t) = arg max, fi,(t — 1).
With probability e,

select a random arm.

e |t explores forever.

e Constant € ensures expected regret of at least
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a=1
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at each time step.
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Why Does «-Greedy Fail?

With probability 1 — ¢,

select arm a(t) = arg max, fi,(t — 1).
With probability e,

select a random arm.

e |t explores forever.

e Constant € ensures expected regret of at least

> e

a=1

x|

at each time step.

K
e Leading to expected cumulative regret of at least (;ZA,.,,) T.

a=1

21



Decaying «-Greedy

e At time step t, explore with ¢;. A decay schedule for €1, ¢, .. ..
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Decaying «-Greedy

e At time step t, explore with ¢;. A decay schedule for €1, ¢, .. ..

e A schedule that has logarithmic regret: ©
c>0

d= min A,
a,A,>0

min< 1 K
= | —
€t 9 d2t
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Decaying «-Greedy

At time step t, explore with €;. A decay schedule for €1, €, .. ..

A schedule that has logarithmic regret: ©

c>0

d= min A,
a,A,>0

. cK
€ = min {1721_}

Requires advance knowledge of gaps A @

Can we achieve sub-linear regret without such knowledge?
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We start again after a break.
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Before the break

e Goal: Find algorithms with sub-linear regret.
e Greedy: Linear regret @
e e-greedy: Linear regret @

e Decaying e-greedy: Logarithmic regret, but requires advance
knowledge of gaps A @

e Can we achieve sub-linear regret without such knowledge?

24



Optimism Principle

Optimism is the best
way to see life
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Optimism Principle informally

“You should act as if you are in the best plausible world.”

Image source: UC Berkeley Al course, lecture 11
Shall we try the new place?
Optimist: Yes!!! Pessimist: Nol!l!

26
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Optimism Principle informally

“You should act as if you are in the best plausible world.”

Image source: UC Berkeley Al course, lecture 11
Shall we try the new place?
Optimist: Yes!!! Pessimist: Nol!l!
Optimism guarantees either optimality or exploration.

26


http://ai.berkeley.edu/lecture_slides.html

Optimism Principle in Arm Selection

e Optimistic estimate of an arm = ‘Largest value it could plausibly be'.
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Optimism Principle in Arm Selection

e Optimistic estimate of an arm = ‘Largest value it could plausibly be’.

e 'Plausible’. The true mean cannot be much larger than the
empirical mean.

e Optimistic estimate of arm a = [i,(t — 1) + optimism term

Similar to greedy, just with an addition of optimism term

Greedy arm selection

Select arm a(t) = arg max, [fi.(t — 1)].
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Optimism Principle in Arm Selection

e Optimistic estimate of an arm = ‘Largest value it could plausibly be’.

e ‘Plausible’. The true mean cannot be much larger than the
empirical mean.

e Optimistic estimate of arm a = [i,(t — 1) + optimism term

Optimistic arm selection

Select arm a(t) = arg max, [fia(t — 1) + optimism term].
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A Crash Course in Concentration
of Measure




Concentration of Random Variables

Let Z1,25,...,Z, be a sequence of of independent and identically dis-
tributed random variables with mean ;1 € R and variance o2 < co.

. N 1o
Empirical mean [i, = - ;Zt.

How close is i, to u?
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Concentration of Random Variables

Let Z1,25,...,Z, be a sequence of of independent and identically dis-
tributed random variables with mean ;1 € R and variance o2 < co.

. N
Empirical mean [i, = - ;Zt.

How close is i, to u?

We could use law of large numbers
lim [, = pu
n—o0

Law of large numbers requires n — co. @
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Preliminaries

Markov’s inequality

If Z is a non-negative random variable and ¢ > 0,

P(ZZC)S@.

Z is o-subgaussian i.e. for all A € R

Elexp(AZ)] < exp (/\22a2>

Which distributions are o-subgaussian? Gaussian, Bernoulli .. ..



Recall: Distributional assumptions

Distributions Xi, ..., Xk are unknown, we may make some assumptions:

e Bernoulli with unknown mean p, € [0, 1].

e Gaussian with unit variance unknown mean p, € R.

9y (X)

e Sub-Gaussian with unit variance.

30
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Preliminaries

Markov’s inequality

If Z is a non-negative random variable and ¢ > 0,

B2

P(Z > ¢) c

Subgaussian

Z is 1-subgaussian i.e. for all A € R

Elexp(A2)] < exp (%)

Which distributions are o-subgaussian? Gaussian, Bernoulli .. ..



Concentration of sub-Gaussian random variables

Chernoff-Hoeffding bound

with mean g and variance 1 and,

Let Z1,...Z, are independent sub-Gaussian random variables 4
[N
L
-2 Z
n —

then for any 6 € (0, 1), T H

<ﬁ - L 2o 1/5)) <5
(ﬁ <4 /2 log( 1/5)) <5 iﬂ



Recall : optimism principle in arm selection

e Optimistic estimate of an arm = Largest value it could plausibly be.

e Optimistic estimate of arm a = [i,(t — 1) + optimism term

Optimistic arm selection

Select arm a(t) = arg max, [fi.(t — 1) + optimism term].

Optimism term of the form \/@?
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Proving Chernoff-Hoeffding bound

Toprove:P<ﬂ>u+ 2"’g(l/‘s)><5 @p(zzc)gy

(2 Elexe(A2)] < exp (%)
Proof:

1 n
]P(ﬁZ/H—e)_]P’<n§ ZtZM+6>
t=1
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Proving Chernoff-Hoeffding bound

Toprove:IP’(ﬁqur 2"’g(l/‘s)><5 @p(zzc)gg

(@ Elexp(A2)] < exp (¥7)
Proof:

1 4
P(ﬂZMJrG):]P’(nZZtZ/Hre) =H”< (Zt—u)Zﬁn)
t=1 it
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Proving Chernoff-Hoeffding bound

TOPrOVG:P’(ﬂZqu 2'°g(1/6)>§5 OrZ>c) <

(@ Elexp(A2)] < exp (¥7)
Proof:

1 n n
P(ﬂzlu—i-e):]P’(nZth,u—&—e) :]ID( (Zt—u)ZGn)
t=1 t

=il

=P (exp (Ai (Z: — u)) > exp ()\en)) for some A € R
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Proving Chernoff-Hoeffding bound

To prove: P (ﬂ >+ 2'°g,(11/6)> <9 DBZ>c) < E[Z]

(@ Elexe(A2)] < exp (%)
Proof:

1 n n
P(ﬁZM+E)IP<HZZtZM+E>: ( (Ztﬂ)26">
t=1
=P (exp (AZ (Z: — M)) > exp (/\en)) for some A € R
t=1
exp </\Z >] by Markov's inequality (1)

< exp(—Xen) - E
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Proving Chernoff-Hoeffding bound

T0pr0ve:IP’<ﬂ2u+ 2'°g£1/6)>§5 OrZ>c) <
(@ Elexp(A2)] < exp (¥7)
Proof:

1 n n
P(ﬂz,u—l—e):]P’(Zth,u—&—e) :]ID( (Zt—;L)Zen)
n t=1 t=1
n
=P (exp (AZ (Z: — u)) > exp ()\en)) for some A € R
=1
exp <)\ Z )] by Markov's inequality (1)

H exp (A )]

< exp(—Xen) - E

= exp (—Aen)
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Proving Chernoff-Hoeffding bound

To prove: P(ﬂqur 2'°g,(11/6)> <9 (DP(Z>c)<Hd
2
DElxp(A2)] < exp (%)

Proof:

1 n
]P’(ﬁZM+e)-]P’<ZZtZM+e> _]P’(
"= t=1
=P (exp (AZ — i ) > exp (/\en)) for some A € R
n
exp ()\Z )] by Markov's inequality (1)

Hexp )1 < exp (—Xen) - H exp (A%/2)

n

(Ze —p) = 6")

< exp(—Xen) - E

= exp (—Xen)
t=1

34



Proving Chernoff-Hoeffding bound

T0pr0ve:IP’<ﬂ2u+ 2'°g(1/6)>§5 OrZ>c) <

(@ Elexp(A2)] < exp (3

~—

Proof: N i
N 1
P(MZM'FE):]P(HZZtZM‘*‘ﬁ) :]I”( (Zt—u)Zen)
t=1 t

=il

n
=P (exp (AZ (Z: — u)) > exp ()\en)) for some A € R
=1

< exp(—Xen) - E |exp <)\Z (Z: — u))] by Markov's inequality (1)
t=1

=exp(—Xen) - E

[[er(r(z - u))] < exp(—Aen) - [Jexp (3/2)

t=1
)\2
= exp <—)\en + 2n>
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Proving Chernoff-Hoeffding bound

T0pr0ve:IP’<ﬂ2u+ 2'°g(1/6)>§5 OrZ>c) <

(@ Elexp(A2)] < exp (3

~—

Proof: N i
N 1
P(MZM'FE):]P(HZZtZM‘*‘ﬁ) :]I”( (Zt—u)Zen)
t=1 t

=il

n
=P (exp (AZ (Z: — u)) > exp ()\en)) for some A € R
=1

< exp(—Xen) - E |exp <)\Z (Z: — u))] by Markov's inequality (1)
t=1

[[er(r(z - u))] < exp(—Aen) - [Jexp (3/2)

=il
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Proving Chernoff-Hoeffding bound

T0pr0ve:IP’<ﬂ2u+ 2'°g(1/6)>§6 OrZ>c) <

(@ Elexp(A2)] < exp (3

~—

Proof: N i
N 1
P(MZM'FE):]P(HZZtZM‘*‘ﬁ) :]I”( (Zt—u)Zen)
t=1 t

=il

n
=P (exp (AZ (Z: — u)) > exp ()\en)) for some A € R
=1

< exp(—Xen) - E |exp <)\Z (Z: — u))] by Markov's inequality (1)
t=1

=exp(—Xen) - E Hexp (A(Z — u))] < exp(—Xen) - Hexp (A3/2)
t=1 t=1
2 2

= exp <—)\en + 2) = exp (_62I’7> for A\ =¢
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Proving Chernoff-Hoeffding bound

T0pr0ve:IP’<ﬂ2u+ 2'°g(1/6)>§6 OrZ>c) <

(@ Elexp(A2)] < exp (3

~—

Proof: N i
N 1
P(MZM'FE):]P(HZZtZM‘*‘ﬁ) :]I”( (Zt—u)Zen)
t=1 t

=il

n
=P (exp (AZ (Z: — u)) > exp ()\en)) for some A € R
=1

< exp(—Xen) - E |exp <)\Z (Z: — u))] by Markov's inequality (1)
t=1

[[er(r(z - u))] < exp(—Aen) - [Jexp (3/2)

=il

€n [21og(1/6) €n
{l > < —_— = _— = —_—
IP(,u_u—i—e)_exp( 2) € p — 0 exp( 2> 34



Upper Confidence Bound (UCB)
algorithm



Upper Confidence Bound (UCB) : Choose Arms Optimistically

e Optimistic estimate of arm a = [i,(t — 1) + optimism term

e Optimism term of the form 4/ M?
Optimistic arm selection

Select arm a(t) = arg max, [fia(t — 1) + optimism term].



Upper Confidence Bound (UCB) : Choose Arms Optimistically

e Optimistic estimate of arm a = [i,(t — 1) + optimism term

e UCB estimate of arm a = fi,(t — 1) + 2log(1/6)

N,(t—1)
UCB arm selection
Select arm a(t) = arg max, [ﬂa(t —1)+ 2/\'/‘:%517/15))



Upper Confidence Bound (UCB): Choose arms optimally

Algorithm UCB algorithm Auer et al. [2002]

Parameters: Confidence level §
fort=1...,K do
Choose each arm once.
end for
fort=K+1,... do
Compute empirical means fi1(t —1),..., ik(t —1).

Select arm a(t) = arg max, [ﬁ,a(t —1)+ 2,:;:%&/1‘?]

N s W

- end for

36



Regret bound for UCB

The expected cumulative regret of UCB after T time steps is
16log(T)

Regret = R(T) < Z A, +3A..
a:A,>0

Logarithmic regret ©



Proving the Regret Bound for UCB : Roadmap

e Decomposition of regret over the arms.
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Proving the Regret Bound for UCB : Roadmap

e Decomposition of regret over the arms.

e On a 'good’ event, prove that sub-optimal arms are not played too
often.
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Proving the Regret Bound for UCB : Roadmap

e Decomposition of regret over the arms.

e On a 'good’ event, prove that sub-optimal arms are not played too
often.

e Prove that the ‘good’ event occurs with a high probability.
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Proving the Regret Bound for UCB : Roadmap

K
e Decomposition of regret over the arms. 93(T) = ZAa E[N,(T)]
a=1

-
where A, = i, — gy and Ny(T) =5 I(a(t) = a)
t=1

e On a 'good’ event, prove that sub-optimal arms are not played too
often.

e Prove that the ‘good’ event occurs with a high probability.

38



Proving the Regret Bound for UCB: |

UCB arm selection

Select arm a(t) = arg max, [ﬂa(f -1)+ % :

‘Good event': When UCB performs well.

Fix a sub-optimal arm a. Assume for all t,
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Fix a sub-optimal arm a. Assume for all t,

Empirical estimate of sub-optimal arm a is not too big.
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Proving the Regret Bound for UCB: |

UCB arm selection

Select arm a(t) = arg max, [ﬂa(f -1)+ % :

‘Good event': When UCB performs well.
Fix a sub-optimal arm a. Assume for all t,

Empirical estimate of sub-optimal arm a is not too big.

2log(1/9)

pa(t— 1) < s .
palt =1) < pa [y

Empirical estimate of optimal arm a, is not too small.



Proving the Regret Bound for UCB: |

UCB arm selection

Select arm a(t) = arg max, [ﬂa(f -1)+ % :

‘Good event': When UCB performs well.
Fix a sub-optimal arm a. Assume for all t,

Empirical estimate of sub-optimal arm a is not too big.

2log(1/9)

pa(t— 1) < s .
palt =1) < pa [y

Empirical estimate of optimal arm a, is not too small.

2log(1/9)

a (t—1)> ptye — 4| —————=.
Ma*( )_lu Na*(til)



Proving the Regret Bound for UCB: Il

UCB arm selection

Select arm a(t) = arg max, [ﬂa(f -1)+ % :

@ Ma T 2/\2%5?1(;) > ﬂa(t - 1)v
~ 2log(1/6
@ a6 =1) + 5L = e

At time t, the algorithm selects a only if,
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Proving the Regret Bound for UCB: Il

UCB arm selection

Select arm a(t) = arg max, [ﬂa(t -1+ %

@ 1L 2l\llog£1/1(;) > fa(t— 1),
lo

2log(1/4)
Dinte- s iR~ 0.

> fla(t —1) + m using @
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Proving the Regret Bound for UCB: Il

UCB arm selection

Select arm a(t) = arg max, [ﬂa(t -1+ %

@ s 2,\|,Ogt(l/1(;) > fa(t—1),
o

2log(1/6)
@Ma* —1) + VR = M

2108(1/) » pe—1) + m using ()

2log(1/9)
Na*(t - 1)
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Proving the Regret Bound for UCB: Il

UCB arm selection

Select arm a(t) = arg max, [ﬂa(t -1+ %

@ s 2,\|,Ogt(l/1(;) > fa(t—1),
o

2log(1/6)
@Ma* —1) + VR = M

208(1/0) 5 e —1) + /2B G @

t—1) N,(t —1)
> I[’\l/a* (t - 1) + I%I:o(ggl_/i))
> [y
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Proving the Regret Bound for UCB: Il

UCB arm selection

Select arm a(t) = arg max, [ﬂa(t -1+ %

@ s 2,\|,Ogt(l/1(;) > fa(t—1),
o

2log(1/6)
@Ma* —1) + VR = M

208(1/0) 5 e —1) + /2B G @

t—1) N,(t —1)
A 2log(1/0
Zﬂa*(t_l) + N(t(—/l))
> p = pat A, using (2)

2, [ 2rell/o)
W 2oy = HT R ©



Proving the Regret Bound for UCB: Il

If the good event occurs,
at time t, the algorithm selects a only if,

2log(1/0)

>
N,(t—1) = Ba

Na(t—1)§8|OgA(§/6)

So assuming the good event occurs,

Na(T)gw%(imH.
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Probability (Good Event Does Not Occur)

The good event,

pa i,'o(gt(i/f)) fa(t = 1)
Ao (t—1) 2log(1/9)
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Probability (Good Event Does Not Occur)

The good event does not occur,

Ma + m < llza(t_l)
Ao (t—1)+ 2log(1/4)

N, (t—1) =

42



Probability (Good Event Does Not Occur)

The good event does not occur at time step t,

2|0g 2log(1/6)
N,(t—1)

felE=0F i’"?ff?)

\ /\

fa(t—1)

IA

[

Chernoff-Hoeffding bound shows that

P (ﬁa(t— 1) > o+ Q'O(g(l/fD )
P <ﬂa*(r 1) < - ,f,"’(gt“_/?)) <5
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Probability (Good Event Does Not Occur)

The good event does not occur at some stept, 1 <t < T,

a + 2|°(g(1/f)) <fia(t—1)
fia, (£ — 1) + ,f,'°ft(1_/‘?) < .

Chernoff-Hoeffding bound combined with union bound
P(UiE) < X2 P(Ei),

IP<E|T<T:/13*(T_1)<M*_ /fllo(gf]f(?)><57-
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Proving the Regret Bound for UCB: IV

@ N, ( 8'°g(1/5) + 1  when the good event occurs.
@ Probablllty (good event does not occur) < 20T.

Using the decomposition of regret R( T) over the arms,

K
- ZAaE[Na(T
a=1
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@ N, ( 8'°g(1/5) + 1  when the good event occurs.
@ Probablllty (good event does not occur) < 20T.

Using the decomposition of regret R( T) over the arms,

K
- ZAaE[Na(T
a=1

8log(1/9)
< Z A, {N+1+25T- T
a:A,>0 a
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Proving the Regret Bound for UCB: IV

@ N, ( 8'°g(1/5) + 1  when the good event occurs.
@ Probablllty (good event does not occur) < 20T.

Using the decomposition of regret R( T) over the arms,

K
- ZAaE[Na(T
a=1

8log(1/9)
< Z A, {N+1+25T- T
a:A,>0 a

8Iog(T2) 2 . 2
<> A, {M+l+2pT choosing § = 1/ T2,

43



Proving the Regret Bound for UCB: IV

@ N, ( 8'°g(1/5) + 1  when the good event occurs.
@ Probablllty (good event does not occur) < 20T.

Using the decomposition of regret R( T) over the arms,

K
> AE[N,(T
a=1

> a, {S'Og(l/é) +1426T- T]

A2
a:A,>0 a

8log(T?) ’ . _ 2
ZAa {A‘%+1+2T2T choosing 6 =1/T7,
a:A,>0

B 161og(T)
= Z T + 3A,.

a:A,>0

R(T)

IN

IN
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Regret Bound for UCB

The expected cumulative regret of UCB after T time steps is
16log(T)

Regret = R(T) < Z A, +3A..
a:A,>0

a4



Regret Bound for UCB

The expected cumulative regret of UCB after T time steps is

16log(T
Regret = R(T) < Z 6Z—g()+3Aa.

a:A,>0

Distribution-dependent regret bound.

a4



Distribution-free Regret Bound for UCB

45


https://en.wikipedia.org/wiki/Big_O_notation

Distribution-free Regret Bound for UCB

= ) AEN(TI+ Y AEN(T)

a:A,;>0,A,<A alA,>A
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Distribution-free Regret Bound for UCB

= Y AEN(TI+ Y AEN(T)]

a:A,;>0,A,<A alA,>A

16 log(T
<ary 3 00D g,
a0,>A ?
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https://en.wikipedia.org/wiki/Big_O_notation

Distribution-free Regret Bound for UCB

S AENTI+ Y AEN(T)]

a:A,;>0,A,<A alA,>A
16 log(T)
SAT+ Y =43,

a
alA,>A

< O(\/KTlog(T)) using A = /Klog T/T.

A primer on big-oh notation O(.)

45
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e Stationary stochastic bandits.

46



e Stationary stochastic bandits.

e Why greedy and e-greedy does not work?
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e Stationary stochastic bandits.
e Why greedy and e-greedy does not work?

e A short introduction to concentration of measure.
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Stationary stochastic bandits.

Why greedy and e-greedy does not work?

A short introduction to concentration of measure.

UCB algorithm and its regret bound.
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Next lecture

e Bayesian way of looking at bandits.
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Next lecture

e Bayesian way of looking at bandits.

e Leading to another algorithm and its regret bound.
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