
Introduction to Reinforcement Learning

Pratik Gajane

September 7, 2022

2AMM20 Research Topics in Data Mining

Eindhoven University of Technology

1

Preliminaries

Objectives

• To gain an understanding of various reinforcement learning problems

and formulate them mathematically.

• To devise solution strategies for these problems.

• To prove performance guarantees for these solutions.

2

Prerequisites

• Elementary statistics and probability theory.

• Comfort with applying mathematical tools.

• Bachelor’s course worth of background knowledge in Data Mining

and Machine Learning.

3

Class Information

• Course webpage :

https://canvas.tue.nl/courses/21915/pages/reinforcement-learning-

track-page

• Uploaded lecture slides may be updated as the course progresses.

• Contact me : p.gajane@tue.nl

• Please put [2AMM20] (with the square brackets) in the subject line

of your email.

4

https://canvas.tue.nl/courses/21915/pages/reinforcement-learning-track-page
https://canvas.tue.nl/courses/21915/pages/reinforcement-learning-track-page
mailto:p.gajane@tue.nl

Resources

• Reinforcement Learning – An Introduction

[Sutton and Barto, 2018][Chapter 1, 2 and 3]

• Bandit Algorithms [Lattimore and Szepesvari,

2020]

• Markov Decision Processes: Discrete

Stochastic Dynamic Programming [Puterman,

1994][Chapter 4]

• Research Articles

5

Lecture 1 : Outline

• What is Reinforcement Learning?

• Elements of a Reinforcement Learning (RL) Problem

• Formulating RL with Multi-Armed Bandits

• Formulating RL with Markov Decision Processes

6

What is Reinforcement Learning?

What is Learning?

• Learning : Learning occurs when performance at given tasks

improves with experience [Mitchell, 1997].

• Definition not all encompassing : Breaking-in a new pair of shoes.

Do the shoes learn to fit our feet better?

• How do people and animals learn?

7

What is Learning?

• Learning : Learning occurs when performance at given tasks

improves with experience [Mitchell, 1997].

• Definition not all encompassing : Breaking-in a new pair of shoes.

Do the shoes learn to fit our feet better?

• How do people and animals learn?

7

What is Learning?

• Learning : Learning occurs when performance at given tasks

improves with experience [Mitchell, 1997].

• Definition not all encompassing : Breaking-in a new pair of shoes.

Do the shoes learn to fit our feet better?

• How do people and animals learn?

7

Learning by Reinforcement

• Goal : To train the dog (agent/model/learner) to complete a task

within an environment.

• Trainer issues a command/cue which the dog observes.

• The dog performs an action.

• If desired action,

then reward,

otherwise

no (or negative) reward.

8

Learning by Reinforcement

• Goal : To train the dog (agent/model/learner) to complete a task

within an environment.

• Trainer issues a command/cue which the dog observes.

• The dog performs an action.

• If desired action,

then reward,

otherwise

no (or negative) reward.

8

Learning by Reinforcement

• Goal : To train the dog (agent/model/learner) to complete a task

within an environment.

• Trainer issues a command/cue which the dog observes.

• The dog performs an action.

• If desired action,

then reward,

otherwise

no (or negative) reward.

8

Learning by Reinforcement

• Goal : To train the dog (agent/model/learner) to complete a task

within an environment.

• Trainer issues a command/cue which the dog observes.

• The dog performs an action.

• If desired action,

then reward,

otherwise

no (or negative) reward.

8

Place of Reinforcement Learning in the Learning Taxonomy

Image source:mathworks

Figure 1: Basic machine learning paradigms.

9

Unsupervised Learning

Aims to find structures/clusters in unlabeled data.

Input data

Model

10

Supervised Learning

Learning from training data of labeled examples provided by a knowledge-

able external supervisor.

These are footballs

Training data

Model

It's a
football

Prediction

These are basketballs

11

Reinforcement Learning

Learning from the feedback provided by the environment in response to

the model’s behavior to optimize the reward.

Input sequence

Model

Environment
Reward

It's a
basketball

0

Input sequence

Model

Environment
Reward

It's a
football

1

12

Examples of Reinforcement Learning

• Make a humanoid robot walk.

• Manage an investment portfolio.

• Play many different Atari games.

• Ad placement.

• Fly stunt manoeuvres in a helicopter.

13

Examples of Reinforcement Learning

• Make a humanoid robot walk.

• Manage an investment portfolio.

• Play many different Atari games.

• Ad placement.

• Fly stunt manoeuvres in a helicopter.

13

Examples of Reinforcement Learning

• Make a humanoid robot walk.

• Manage an investment portfolio.

• Play many different Atari games.

• Ad placement.

• Fly stunt manoeuvres in a helicopter.

13

Examples of Reinforcement Learning

• Make a humanoid robot walk.

• Manage an investment portfolio.

• Play many different Atari games.

• Ad placement.

• Fly stunt manoeuvres in a helicopter.

13

Examples of Reinforcement Learning

• Make a humanoid robot walk.

• Manage an investment portfolio.

• Play many different Atari games.

• Ad placement.

• Fly stunt manoeuvres in a helicopter.

13

Features of Reinforcement Learning

• Learning through a reward signal.

• Feedback can be delayed.

• Interactions are often sequential.

• It is active, rather than passive.

14

Features of Reinforcement Learning

• Learning through a reward signal.

• Feedback can be delayed.

• Interactions are often sequential.

• It is active, rather than passive.

14

Features of Reinforcement Learning

• Learning through a reward signal.

• Feedback can be delayed.

• Interactions are often sequential.

• It is active, rather than passive.

14

Features of Reinforcement Learning

• Learning through a reward signal.

• Feedback can be delayed.

• Interactions are often sequential.

• It is active, rather than passive.

14

Distinguishing Factors of Reinforcement Learning

• Differences from supervised learning :

• No external supervisor, only a reward signal.

• No need to obtain representative and correct training samples.

• Differences from unsupervised learning :

• Goal-directed.

• Finding structures in input data not sufficient for maximizing the

reward.

• Exploration/exploitation dilemma.

15

Distinguishing Factors of Reinforcement Learning

• Differences from supervised learning :

• No external supervisor, only a reward signal.

• No need to obtain representative and correct training samples.

• Differences from unsupervised learning :

• Goal-directed.

• Finding structures in input data not sufficient for maximizing the

reward.

• Exploration/exploitation dilemma.

15

Distinguishing Factors of Reinforcement Learning

• Differences from supervised learning :

• No external supervisor, only a reward signal.

• No need to obtain representative and correct training samples.

• Differences from unsupervised learning :

• Goal-directed.

• Finding structures in input data not sufficient for maximizing the

reward.

• Exploration/exploitation dilemma.

15

Exploration/Exploitation Dilemma

Image source:UC Berkeley AI course, lecture 11

• Exploit. Choose actions tried in the past and found to be rewarding.

• Explore. Choose unexplored actions to see if they are more

rewarding.

• Neither exploration nor exploitation can be pursued exclusively.

16

http://ai.berkeley.edu/lecture_slides.html

Exploration/Exploitation Dilemma

Image source:UC Berkeley AI course, lecture 11

• Exploit. Choose actions tried in the past and found to be rewarding.

• Explore. Choose unexplored actions to see if they are more

rewarding.

• Neither exploration nor exploitation can be pursued exclusively.

16

http://ai.berkeley.edu/lecture_slides.html

Exploration/Exploitation Dilemma

Image source:UC Berkeley AI course, lecture 11

• Exploit. Choose actions tried in the past and found to be rewarding.

• Explore. Choose unexplored actions to see if they are more

rewarding.

• Neither exploration nor exploitation can be pursued exclusively.

16

http://ai.berkeley.edu/lecture_slides.html

Exploration/Exploitation Dilemma

Image source:UC Berkeley AI course, lecture 11

• Exploit. Choose actions tried in the past and found to be rewarding.

• Explore. Choose unexplored actions to see if they are more

rewarding.

• Neither exploration nor exploitation can be pursued exclusively.

16

http://ai.berkeley.edu/lecture_slides.html

Reinforcement Learning :

Problem Formulation

Reinforcement Learning : Agent and Environment

Agent
Environment

Observation

Action
Reward

• Receives observation o(t).

• Executes action a(t).

• Receives reward r(t).

• Emits observation o(t).

• Receives action a(t).

• Emits reward r(t).

• Horizon T : time step when the process ends.

17

Reinforcement Learning : Agent and Environment

Agent
Environment

Observation

Action
Reward

• Receives observation o(t).

• Executes action a(t).

• Receives reward r(t).

• Emits observation o(t).

• Receives action a(t).

• Emits reward r(t).

• Horizon T : time step when the process ends.

17

Reinforcement Learning : Agent and Environment

Agent
Environment

Observation

Action
Reward

• Receives observation o(t).

• Executes action a(t).

• Receives reward r(t).

• Emits observation o(t).

• Receives action a(t).

• Emits reward r(t).

• Horizon T : time step when the process ends.

17

Reinforcement Learning : Agent and Environment

Agent
Environment

Observation

Action
Reward

• Receives observation o(t).

• Executes action a(t).

• Receives reward r(t).

• Emits observation o(t).

• Receives action a(t).

• Emits reward r(t).

• Horizon T : time step when the process ends.

17

Reinforcement Learning : Agent and Environment

Agent
Environment

Observation

Action
Reward

• Receives observation o(t).

• Executes action a(t).

• Receives reward r(t).

• Emits observation o(t).

• Receives action a(t).

• Emits reward r(t).

• Horizon T : time step when the process ends.

17

Reinforcement Learning : Agent and Environment

Agent
Environment

Observation

Action
Reward

• Receives observation o(t).

• Executes action a(t).

• Receives reward r(t).

• Emits observation o(t).

• Receives action a(t).

• Emits reward r(t).

• Horizon T : time step when the process ends.

17

Reinforcement Learning : Agent and Environment

Agent
Environment

Observation

Action
Reward

• Receives observation o(t).

• Executes action a(t).

• Receives reward r(t).

• Emits observation o(t).

• Receives action a(t).

• Emits reward r(t).

• Horizon T : time step when the process ends.

17

Elements of a Reinforcement Learning (RL) Problem

• State and action.

• Reward : Indicates what is good and bad for the agent in an

immediate sense.

• Value : Indicates long-term desirability of a state.

• Policy : Encoding of the agent’s behavior.

• Model : Interpretation of the environment’s behaviour.

18

Elements of a Reinforcement Learning (RL) Problem

• State and action.

• Reward : Indicates what is good and bad for the agent in an

immediate sense.

• Value : Indicates long-term desirability of a state.

• Policy : Encoding of the agent’s behavior.

• Model : Interpretation of the environment’s behaviour.

18

Elements of a Reinforcement Learning (RL) Problem

• State and action.

• Reward : Indicates what is good and bad for the agent in an

immediate sense.

• Value : Indicates long-term desirability of a state.

• Policy : Encoding of the agent’s behavior.

• Model : Interpretation of the environment’s behaviour.

18

Elements of a Reinforcement Learning (RL) Problem

• State and action.

• Reward : Indicates what is good and bad for the agent in an

immediate sense.

• Value : Indicates long-term desirability of a state.

• Policy : Encoding of the agent’s behavior.

• Model : Interpretation of the environment’s behaviour.

18

Elements of a Reinforcement Learning (RL) Problem

• State and action.

• Reward : Indicates what is good and bad for the agent in an

immediate sense.

• Value : Indicates long-term desirability of a state.

• Policy : Encoding of the agent’s behavior.

• Model : Interpretation of the environment’s behaviour.

18

Elements of a RL Problem : State and Action

Image source:Chess.com

• State s ∈ S describes the current situation.

• Examples : Chess position, robot’s current position.

• Actions a ∈ A are the choices available to the agent.

• Actions are permitted to affect the future state.

19

https://www.chess.com/terms/chess-pawn

Elements of a RL Problem : State and Action

Image source:Chess.com

• State s ∈ S describes the current situation.

• Examples : Chess position, robot’s current position.

• Actions a ∈ A are the choices available to the agent.

• Actions are permitted to affect the future state.

19

https://www.chess.com/terms/chess-pawn

Elements of a RL Problem : Reward I

Image source:Chess.com

• A numerical feedback signal r(t).

• Indicates if the agent’s action a(t) was good i.e. defines the goal :

to maximize the cumulative sum of rewards.

• Reward hypothesis : Any goal can be formalized as the outcome of

maximizing a cumulative reward.

20

https://www.chess.com/terms/chess-pawn

Elements of a RL Problem : Reward I

Image source:Chess.com

• A numerical feedback signal r(t).

• Indicates if the agent’s action a(t) was good i.e. defines the goal :

to maximize the cumulative sum of rewards.

• Reward hypothesis : Any goal can be formalized as the outcome of

maximizing a cumulative reward.

20

https://www.chess.com/terms/chess-pawn

Elements of a RL Problem : Reward I

Image source:Chess.com

• A numerical feedback signal r(t).

• Indicates if the agent’s action a(t) was good i.e. defines the goal :

to maximize the cumulative sum of rewards.

• Reward hypothesis : Any goal can be formalized as the outcome of

maximizing a cumulative reward.

20

https://www.chess.com/terms/chess-pawn

Elements of a RL Problem : Reward II

Image source:Chess.com

• Dependent on the current state and the current action.

• The agent can only influence the reward through its actions.

• Examples of reward

• Manage an investment portfolio : +ve reward for every € gained,

−ve reward for every € lost.

• Make a humanoid robot walk : +ve reward for every forward step,

−ve reward for every fall.

• Ad placement : +ve reward for every click,

−ve reward for every time it is not clicked.

21

https://www.chess.com/terms/chess-pawn

Elements of a RL Problem : Reward II

Image source:Chess.com

• Dependent on the current state and the current action.

• The agent can only influence the reward through its actions.

• Examples of reward

• Manage an investment portfolio : +ve reward for every € gained,

−ve reward for every € lost.

• Make a humanoid robot walk : +ve reward for every forward step,

−ve reward for every fall.

• Ad placement : +ve reward for every click,

−ve reward for every time it is not clicked.

21

https://www.chess.com/terms/chess-pawn

Elements of a RL Problem : Reward II

Image source:Chess.com

• Dependent on the current state and the current action.

• The agent can only influence the reward through its actions.

• Examples of reward

• Manage an investment portfolio : +ve reward for every € gained,

−ve reward for every € lost.

• Make a humanoid robot walk : +ve reward for every forward step,

−ve reward for every fall.

• Ad placement : +ve reward for every click,

−ve reward for every time it is not clicked.

21

https://www.chess.com/terms/chess-pawn

Elements of a RL Problem : Reward II

Image source:Chess.com

• Dependent on the current state and the current action.

• The agent can only influence the reward through its actions.

• Examples of reward

• Manage an investment portfolio : +ve reward for every € gained,

−ve reward for every € lost.

• Make a humanoid robot walk : +ve reward for every forward step,

−ve reward for every fall.

• Ad placement : +ve reward for every click,

−ve reward for every time it is not clicked.

21

https://www.chess.com/terms/chess-pawn

Elements of a RL Problem : Reward II

Image source:Chess.com

• Dependent on the current state and the current action.

• The agent can only influence the reward through its actions.

• Examples of reward

• Manage an investment portfolio : +ve reward for every € gained,

−ve reward for every € lost.

• Make a humanoid robot walk : +ve reward for every forward step,

−ve reward for every fall.

• Ad placement : +ve reward for every click,

−ve reward for every time it is not clicked.

21

https://www.chess.com/terms/chess-pawn

Elements of a RL Problem : Reward II

Image source:Chess.com

• Dependent on the current state and the current action.

• The agent can only influence the reward through its actions.

• Examples of reward

• Manage an investment portfolio : +ve reward for every € gained,

−ve reward for every € lost.

• Make a humanoid robot walk : +ve reward for every forward step,

−ve reward for every fall.

• Ad placement : +ve reward for every click,

−ve reward for every time it is not clicked. 21

https://www.chess.com/terms/chess-pawn

Elements of a RL Problem : Reward III

Image source:Chess.com

• Rewards might be delayed.

• Greedy strategy : Make the locally optimal choice at each time step.

• Being greedy might not work : sometimes better to sacrifice short

term reward to gain more long-term reward.

22

https://www.chess.com/terms/chess-pawn

Elements of a RL Problem : Reward III

Image source:Chess.com

• Rewards might be delayed.

• Greedy strategy : Make the locally optimal choice at each time step.

• Being greedy might not work : sometimes better to sacrifice short

term reward to gain more long-term reward.

22

https://www.chess.com/terms/chess-pawn

Elements of a RL Problem : Reward III

Image source:Chess.com

• Rewards might be delayed.

• Greedy strategy : Make the locally optimal choice at each time step.

• Being greedy might not work : sometimes better to sacrifice short

term reward to gain more long-term reward.

22

https://www.chess.com/terms/chess-pawn

Elements of a RL Problem : Policy

• The agent’s way of behaving at a given time.

• Mapping π from states to actions.

• Deterministic πs = a.

• Stochastic πs(a) = P(a | s).

23

Elements of a RL Problem : Policy

• The agent’s way of behaving at a given time.

• Mapping π from states to actions.

• Deterministic πs = a.

• Stochastic πs(a) = P(a | s).

23

Elements of a RL Problem : Policy

• The agent’s way of behaving at a given time.

• Mapping π from states to actions.

• Deterministic πs = a.

• Stochastic πs(a) = P(a | s).

23

Elements of a RL Problem : Policy

• The agent’s way of behaving at a given time.

• Mapping π from states to actions.

• Deterministic πs = a.

• Stochastic πs(a) = P(a | s).

23

Elements of a RL Problem : Value

• Values of states specify what is good in the long run.

• Total amount of reward an agent can expect to accumulate over the

future, starting from that state.

• Value v depends on the policy π.

• vπ(s) = E[r(t + 1) + r(t + 2) + r(t + 3) + . . . | π, s(t) = s]

• Infinite (or very large) horizon T? Trade-off of importance between

immediate vs long-term rewards - discount factor γ ∈ (0, 1).

• vπ(s) = E[r(t + 1) + γr(t + 2) + γ2r(t + 3) + . . . | π, s(t) = s]

• Can be used to evaluate desirability of states and choose between

actions.

24

Elements of a RL Problem : Value

• Values of states specify what is good in the long run.

• Total amount of reward an agent can expect to accumulate over the

future, starting from that state.

• Value v depends on the policy π.

• vπ(s) = E[r(t + 1) + r(t + 2) + r(t + 3) + . . . | π, s(t) = s]

• Infinite (or very large) horizon T? Trade-off of importance between

immediate vs long-term rewards - discount factor γ ∈ (0, 1).

• vπ(s) = E[r(t + 1) + γr(t + 2) + γ2r(t + 3) + . . . | π, s(t) = s]

• Can be used to evaluate desirability of states and choose between

actions.

24

Elements of a RL Problem : Value

• Values of states specify what is good in the long run.

• Total amount of reward an agent can expect to accumulate over the

future, starting from that state.

• Value v depends on the policy π.

• vπ(s) = E[r(t + 1) + r(t + 2) + r(t + 3) + . . . | π, s(t) = s]

• Infinite (or very large) horizon T? Trade-off of importance between

immediate vs long-term rewards - discount factor γ ∈ (0, 1).

• vπ(s) = E[r(t + 1) + γr(t + 2) + γ2r(t + 3) + . . . | π, s(t) = s]

• Can be used to evaluate desirability of states and choose between

actions.

24

Elements of a RL Problem : Value

• Values of states specify what is good in the long run.

• Total amount of reward an agent can expect to accumulate over the

future, starting from that state.

• Value v depends on the policy π.

• vπ(s) = E[r(t + 1) + r(t + 2) + r(t + 3) + . . . | π, s(t) = s]

• Infinite (or very large) horizon T? Trade-off of importance between

immediate vs long-term rewards - discount factor γ ∈ (0, 1).

• vπ(s) = E[r(t + 1) + γr(t + 2) + γ2r(t + 3) + . . . | π, s(t) = s]

• Can be used to evaluate desirability of states and choose between

actions.

24

Elements of a RL Problem : Value

• Values of states specify what is good in the long run.

• Total amount of reward an agent can expect to accumulate over the

future, starting from that state.

• Value v depends on the policy π.

• vπ(s) = E[r(t + 1) + r(t + 2) + r(t + 3) + . . . | π, s(t) = s]

• Infinite (or very large) horizon T? Trade-off of importance between

immediate vs long-term rewards - discount factor γ ∈ (0, 1).

• vπ(s) = E[r(t + 1) + γr(t + 2) + γ2r(t + 3) + . . . | π, s(t) = s]

• Can be used to evaluate desirability of states and choose between

actions.

24

Elements of a RL Problem : Value

• Values of states specify what is good in the long run.

• Total amount of reward an agent can expect to accumulate over the

future, starting from that state.

• Value v depends on the policy π.

• vπ(s) = E[r(t + 1) + r(t + 2) + r(t + 3) + . . . | π, s(t) = s]

• Infinite (or very large) horizon T? Trade-off of importance between

immediate vs long-term rewards - discount factor γ ∈ (0, 1).

• vπ(s) = E[r(t + 1) + γr(t + 2) + γ2r(t + 3) + . . . | π, s(t) = s]

• Can be used to evaluate desirability of states and choose between

actions.

24

Elements of a RL Problem : Value

• Values of states specify what is good in the long run.

• Total amount of reward an agent can expect to accumulate over the

future, starting from that state.

• Value v depends on the policy π.

• vπ(s) = E[r(t + 1) + r(t + 2) + r(t + 3) + . . . | π, s(t) = s]

• Infinite (or very large) horizon T? Trade-off of importance between

immediate vs long-term rewards - discount factor γ ∈ (0, 1).

• vπ(s) = E[r(t + 1) + γr(t + 2) + γ2r(t + 3) + . . . | π, s(t) = s]

• Can be used to evaluate desirability of states and choose between

actions.

24

Elements of a RL Problem : Model

• Model is a representation of the environment’s behaviour.

• Reward function R provides the immediate reward given the current

state and action. R(s, a) = E[r(t + 1) | s(t) = s, a(t) = a].

• Transition function P provides the next state given the current state

and action. P(s ′ | s, a) = P(s(t + 1) = s ′ | s(t) = s, a(t) = a).

25

Elements of a RL Problem : Model

• Model is a representation of the environment’s behaviour.

• Reward function R provides the immediate reward given the current

state and action. R(s, a) = E[r(t + 1) | s(t) = s, a(t) = a].

• Transition function P provides the next state given the current state

and action. P(s ′ | s, a) = P(s(t + 1) = s ′ | s(t) = s, a(t) = a).

25

Elements of a RL Problem : Model

• Model is a representation of the environment’s behaviour.

• Reward function R provides the immediate reward given the current

state and action. R(s, a) = E[r(t + 1) | s(t) = s, a(t) = a].

• Transition function P provides the next state given the current state

and action. P(s ′ | s, a) = P(s(t + 1) = s ′ | s(t) = s, a(t) = a).

25

Elements of a RL Problem : Model

• Model is a representation of the environment’s behaviour.

• Reward function R provides the immediate reward given the current

state and action. R(s, a) = E[r(t + 1) | s(t) = s, a(t) = a].

• Transition function P provides the next state given the current state

and action. P(s ′ | s, a) = P(s(t + 1) = s ′ | s(t) = s, a(t) = a).

Figure 2: Model-based learning

Figure 3: Model-free learning

25

An Example of a RL Problem I

Image source:DeepMind RL course

• Move from start state to goal state as quickly as possible.

• Reward : −1 per time step.

• State : agent’s location.

• Actions : ↑, ↓, ←, →.

26

https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver

An Example of a RL Problem I

Image source:DeepMind RL course

• Move from start state to goal state as quickly as possible.

• Reward : −1 per time step.

• State : agent’s location.

• Actions : ↑, ↓, ←, →.

26

https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver

An Example of a RL Problem I

Image source:DeepMind RL course

• Move from start state to goal state as quickly as possible.

• Reward : −1 per time step.

• State : agent’s location.

• Actions : ↑, ↓, ←, →.

26

https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver

An Example of a RL Problem I

Image source:DeepMind RL course

• Move from start state to goal state as quickly as possible.

• Reward : −1 per time step.

• State : agent’s location.

• Actions : ↑, ↓, ←, →.

26

https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver

An Example of a RL Problem II

Image source:DeepMind RL course

• Arrows represent policy π(s) for each state s.

27

https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver

An Example of a RL Problem III

Image source:DeepMind RL course

• Numbers represent values vπ(s) of each state s.

28

https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver

Break

We start again after a break.

29

Measuring the Performance : Optimal Value Function

• Recall that,

undiscounted value for policy π is,

vπ(s) = E[r(t + 1) + r(t + 2) + r(t + 3) + . . . | π, s(t) = s],

discounted value for policy π is,

vπ(s) = E[r(t + 1) + γr(t + 2) + γ2r(t + 3) + . . . | π, s(t) = s]

Definition

The optimal value function v∗(s) = maxπvπ(s).

• The optimal value function specifies the best possible performance.

30

Measuring the Performance : Optimal Value Function

• Recall that,

undiscounted value for policy π is,

vπ(s) = E[r(t + 1) + r(t + 2) + r(t + 3) + . . . | π, s(t) = s],

discounted value for policy π is,

vπ(s) = E[r(t + 1) + γr(t + 2) + γ2r(t + 3) + . . . | π, s(t) = s]

Definition

The optimal value function v∗(s) = maxπvπ(s).

• The optimal value function specifies the best possible performance.

30

Measuring the Performance : Optimal Value Function

• Recall that,

undiscounted value for policy π is,

vπ(s) = E[r(t + 1) + r(t + 2) + r(t + 3) + . . . | π, s(t) = s],

discounted value for policy π is,

vπ(s) = E[r(t + 1) + γr(t + 2) + γ2r(t + 3) + . . . | π, s(t) = s]

Definition

The optimal value function v∗(s) = maxπvπ(s).

• The optimal value function specifies the best possible performance.

30

Measuring the Performance : Optimal Policy

• There exists an optimal policy π∗ that is better than or equal to all

other policies1.

π∗ ≥ π,∀π

where π1 ≥ π2 if vπ1(s) ≥ vπ2(s),∀s

• An optimal policy π∗ achieves the optimal value function v∗(s).

vπ∗(s) = v∗(s).

• A RL problem is “solved” when the agent finds an optimal policy.

1For almost all the problems that we will encounter in this course.

31

Measuring the Performance : Optimal Policy

• There exists an optimal policy π∗ that is better than or equal to all

other policies1.

π∗ ≥ π,∀π

where π1 ≥ π2 if vπ1(s) ≥ vπ2(s),∀s
• An optimal policy π∗ achieves the optimal value function v∗(s).

vπ∗(s) = v∗(s).

• A RL problem is “solved” when the agent finds an optimal policy.

1For almost all the problems that we will encounter in this course.

31

Measuring the Performance : Optimal Policy

• There exists an optimal policy π∗ that is better than or equal to all

other policies1.

π∗ ≥ π,∀π

where π1 ≥ π2 if vπ1(s) ≥ vπ2(s),∀s
• An optimal policy π∗ achieves the optimal value function v∗(s).

vπ∗(s) = v∗(s).

• A RL problem is “solved” when the agent finds an optimal policy.

1For almost all the problems that we will encounter in this course.

31

Measuring the Performance : Regret

• Even if the agent learns the optimal policy eventually, it still makes

mistakes during the learning process.

• Regret is the difference between the optimal (expected) rewards and

the agent’s (expected) rewards.

Regretπ = v∗(s)− vπ(s), where s is the starting state

• Regret is a measure of the total mistake cost.

• Minimizing regret equivalent to maximizing cumulative reward.

32

Measuring the Performance : Regret

• Even if the agent learns the optimal policy eventually, it still makes

mistakes during the learning process.

• Regret is the difference between the optimal (expected) rewards and

the agent’s (expected) rewards.

Regretπ = v∗(s)− vπ(s), where s is the starting state

• Regret is a measure of the total mistake cost.

• Minimizing regret equivalent to maximizing cumulative reward.

32

Measuring the Performance : Regret

• Even if the agent learns the optimal policy eventually, it still makes

mistakes during the learning process.

• Regret is the difference between the optimal (expected) rewards and

the agent’s (expected) rewards.

Regretπ = v∗(s)− vπ(s), where s is the starting state

• Regret is a measure of the total mistake cost.

• Minimizing regret equivalent to maximizing cumulative reward.

32

Measuring the Performance : Regret

• Even if the agent learns the optimal policy eventually, it still makes

mistakes during the learning process.

• Regret is the difference between the optimal (expected) rewards and

the agent’s (expected) rewards.

Regretπ = v∗(s)− vπ(s), where s is the starting state

• Regret is a measure of the total mistake cost.

• Minimizing regret equivalent to maximizing cumulative reward.

32

Non-associative RL :

Multi-Armed Bandits

Multi-armed bandits

Image source:Microsoft research

• Learning to act in a single situation i.e. state.

• Agent faces repeated choice among K different actions/arms.

• After each choice, the learner receives a numerical reward.

• Goal : Maximize the cumulative reward or minimize the regret.

33

https://www.microsoft.com/en-us/research/

Multi-armed bandits

Image source:Microsoft research

• Learning to act in a single situation i.e. state.

• Agent faces repeated choice among K different actions/arms.

• After each choice, the learner receives a numerical reward.

• Goal : Maximize the cumulative reward or minimize the regret.

33

https://www.microsoft.com/en-us/research/

Multi-armed bandits

Image source:Microsoft research

• Learning to act in a single situation i.e. state.

• Agent faces repeated choice among K different actions/arms.

• After each choice, the learner receives a numerical reward.

• Goal : Maximize the cumulative reward or minimize the regret.

33

https://www.microsoft.com/en-us/research/

Multi-armed bandits

Image source:Microsoft research

• Learning to act in a single situation i.e. state.

• Agent faces repeated choice among K different actions/arms.

• After each choice, the learner receives a numerical reward.

• Goal : Maximize the cumulative reward or minimize the regret.

33

https://www.microsoft.com/en-us/research/

Stationary Stochastic Bandits

• Reward for arm a drawn i.i.d. from an unknown stationary

distribution.

• Each action a ∈ A has expected or mean reward µa.

• Practical scenario : A doctor choosing between experimental drugs

for a series of samples exhibiting a disease.

• A variant : Non-stationary stochastic bandits - rewards are drawn

from distributions which may change over time.

34

Stationary Stochastic Bandits

• Reward for arm a drawn i.i.d. from an unknown stationary

distribution.

• Each action a ∈ A has expected or mean reward µa.

• Practical scenario : A doctor choosing between experimental drugs

for a series of samples exhibiting a disease.

• A variant : Non-stationary stochastic bandits - rewards are drawn

from distributions which may change over time.

34

Stationary Stochastic Bandits

• Reward for arm a drawn i.i.d. from an unknown stationary

distribution.

• Each action a ∈ A has expected or mean reward µa.

• Practical scenario : A doctor choosing between experimental drugs

for a series of samples exhibiting a disease.

• A variant : Non-stationary stochastic bandits - rewards are drawn

from distributions which may change over time.

34

Stationary Stochastic Bandits

• Reward for arm a drawn i.i.d. from an unknown stationary

distribution.

• Each action a ∈ A has expected or mean reward µa.

• Practical scenario : A doctor choosing between experimental drugs

for a series of samples exhibiting a disease.

• A variant : Non-stationary stochastic bandits - rewards are drawn

from distributions which may change over time.

34

Adversarial Bandits

Image source:Microsoft research

• The assumption of stationary stochastic distributions is optimistic

and sometimes unrealistic.

• Pessimistic assumption : rewards are chosen adversarially.

• Oblivious adversary : rewards for all arms and all rounds are chosen

in advance.

35

https://www.microsoft.com/en-us/research/

Adversarial Bandits

Image source:Microsoft research

• The assumption of stationary stochastic distributions is optimistic

and sometimes unrealistic.

• Pessimistic assumption : rewards are chosen adversarially.

• Oblivious adversary : rewards for all arms and all rounds are chosen

in advance.

35

https://www.microsoft.com/en-us/research/

Adversarial Bandits

Image source:Microsoft research

• The assumption of stationary stochastic distributions is optimistic

and sometimes unrealistic.

• Pessimistic assumption : rewards are chosen adversarially.

• Oblivious adversary : rewards for all arms and all rounds are chosen

in advance.

35

https://www.microsoft.com/en-us/research/

Dueling Bandits

• Relative feedback not absolute feedback.

• E.g. : “I like football more than tennis” instead of “I value football

at 48/50 and tennis at 33/50”.

Figure 4: DuckDuckGo search results Figure 5: Google search results

• Practical scenario : Information retrieval in search engines.

• Relative feedback by interleaved filtering [Radlinski and Joachims,

2007]

36

Dueling Bandits

• Relative feedback not absolute feedback.

• E.g. : “I like football more than tennis” instead of “I value football

at 48/50 and tennis at 33/50”.

Figure 4: DuckDuckGo search results Figure 5: Google search results

• Practical scenario : Information retrieval in search engines.

• Relative feedback by interleaved filtering [Radlinski and Joachims,

2007]

36

Dueling Bandits

• Relative feedback not absolute feedback.

• E.g. : “I like football more than tennis” instead of “I value football

at 48/50 and tennis at 33/50”.

Figure 4: DuckDuckGo search results Figure 5: Google search results

• Practical scenario : Information retrieval in search engines.

• Relative feedback by interleaved filtering [Radlinski and Joachims,

2007]

36

Contextual Bandits

Figure 6: Google search results

• Observation of extra information (context) before choosing an

action.

• Practical scenario : News recommendation, ad selection.

37

Associative RL: Markov Decision

Processes

History and State

• History is the sequence of observations, actions and rewards.

Ft = o(1), r(1), a(1), . . . , a(t − 1), o(t), r(t).

• Future depends on the history :

• Agent selects an action a(t).

• Environment selects a reward/observation.

• State is the information used to determine what happens next.

• Formally, state is a function of the history : s(t) = f (Ft).

38

History and State

• History is the sequence of observations, actions and rewards.

Ft = o(1), r(1), a(1), . . . , a(t − 1), o(t), r(t).

• Future depends on the history :

• Agent selects an action a(t).

• Environment selects a reward/observation.

• State is the information used to determine what happens next.

• Formally, state is a function of the history : s(t) = f (Ft).

38

History and State

• History is the sequence of observations, actions and rewards.

Ft = o(1), r(1), a(1), . . . , a(t − 1), o(t), r(t).

• Future depends on the history :

• Agent selects an action a(t).

• Environment selects a reward/observation.

• State is the information used to determine what happens next.

• Formally, state is a function of the history : s(t) = f (Ft).

38

History and State

• History is the sequence of observations, actions and rewards.

Ft = o(1), r(1), a(1), . . . , a(t − 1), o(t), r(t).

• Future depends on the history :

• Agent selects an action a(t).

• Environment selects a reward/observation.

• State is the information used to determine what happens next.

• Formally, state is a function of the history : s(t) = f (Ft).

38

Markov Property

• “The future is independent of the past given the

present”.

• The state s(t) is Markov if and only if

P(s(t+1) |s(t)) = P(s(t+1) |s(t), s(t−1), . . . , s(1)).

• The present state is a sufficient statistic of the future.

Andrey
Markov(1856-
1922)

39

Markov Property

• “The future is independent of the past given the

present”.

• The state s(t) is Markov if and only if

P(s(t+1) |s(t)) = P(s(t+1) |s(t), s(t−1), . . . , s(1)).

• The present state is a sufficient statistic of the future.

Andrey
Markov(1856-
1922)

39

Markov Property

• “The future is independent of the past given the

present”.

• The state s(t) is Markov if and only if

P(s(t+1) |s(t)) = P(s(t+1) |s(t), s(t−1), . . . , s(1)).

• The present state is a sufficient statistic of the future.

Andrey
Markov(1856-
1922)

39

Markov Process

A Markov process is a memory-less random process i.e. a sequence of

random states s(1), s(2), . . . with the Markov property.

Definition

A Markov process (or a Markov chain) is a tuple ⟨S,P⟩ where

• S is a (finite) set of states, and

• P is a state transition probability function,

Pss′ = P[s(t + 1) = s ′ | s(t) = s].

40

Markov Decision Process

A Markov decision process (MDP) is a Markov process with rewards and

decisions.

Definition

A Markov decision process is a tuple ⟨S,A,R,P⟩ where

• S is a (finite) set of states,

• A is a (finite) set of actions,

• R(s, a) is a reward function,

• P is a state transition probability function,

Pa
ss′ = P[s(t + 1) = s ′ | s(t) = s, a(t) = a].

• Practical scenario : Learning to play chess.

41

Discounted-reward Markov Decision Process

A Markov decision process (MDP) is a Markov process with rewards and

decisions.

Definition

A Markov decision process is a tuple ⟨S,A,R,P, γ⟩ where

• S is a (finite) set of states,

• A is a (finite) set of actions,

• R(s, a) is a reward function,

• P is a state transition probability function,

Pa
ss′ = P[s(t + 1) = s ′ | s(t) = s, a(t) = a], and

• γ ∈ (0, 1) is a discount factor.

• Practical scenario : Portfolio management. Why discounted?

Distant reward not as valuable as immediate reward due to inflation.

42

Summary

• Introduction to reinforcement learning.

• Mathematical formulation of a RL problem.

• Formulating RL with multi-armed bandits and its variants.

• Formulating RL with Markov decision processes.

43

Next Lecture

• Simple solutions to bandits (and why they are sub-optimal?)

• An optimal solution : Upper confidence bound (UCB) algorithm.

• Proving the performance bound for UCB.

44

References i

References

Tor Lattimore and Csaba Szepesvari. Bandit Algorithms. Cambridge Uni-

versity Press, 2020. doi: 10.1017/9781108571401.

Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., USA, 1 edition,

1997. ISBN 0070428077.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic

Dynamic Programming. John Wiley amp; Sons, Inc., USA, 1st edition,

1994. ISBN 0471619779.

F. Radlinski and T. Joachims. Active exploration for learning rankings

from clickthrough data. In KDD 2007, pages 570–579. ACM, 2007. doi:

10.1145/1281192.1281254.

45

References ii

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An

Introduction. MIT Press, second edition, 2018.

46

	Preliminaries
	What is Reinforcement Learning?
	Reinforcement Learning: Problem Formulation
	Non-associative RL: Multi-Armed Bandits
	Associative RL: Markov Decision Processes
	References

