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Preliminaries



Objectives

• To gain an understanding of various reinforcement learning problems

and formulate them mathematically.

• To devise solution strategies for these problems.

• To prove performance guarantees for these solutions.
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Prerequisites

• Elementary statistics and probability theory.

• Comfort with applying mathematical tools.

• Bachelor’s course worth of background knowledge in Data Mining

and Machine Learning.
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Class Information

• Course webpage :

https://canvas.tue.nl/courses/21915/pages/reinforcement-learning-

track-page

• Uploaded lecture slides may be updated as the course progresses.

• Contact me : p.gajane@tue.nl

• Please put [2AMM20] (with the square brackets) in the subject line

of your email.
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Resources

• Reinforcement Learning – An Introduction

[Sutton and Barto, 2018][Chapter 1, 2 and 3]

• Bandit Algorithms [Lattimore and Szepesvari,

2020]

• Markov Decision Processes: Discrete

Stochastic Dynamic Programming [Puterman,

1994][Chapter 4]

• Research Articles
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Lecture 1 : Outline

• What is Reinforcement Learning?

• Elements of a Reinforcement Learning (RL) Problem

• Formulating RL with Multi-Armed Bandits

• Formulating RL with Markov Decision Processes
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What is Reinforcement Learning?



What is Learning?

• Learning : Learning occurs when performance at given tasks

improves with experience [Mitchell, 1997].

• Definition not all encompassing : Breaking-in a new pair of shoes.

Do the shoes learn to fit our feet better?

• How do people and animals learn?
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Learning by Reinforcement

• Goal : To train the dog (agent/model/learner) to complete a task

within an environment.

• Trainer issues a command/cue which the dog observes.

• The dog performs an action.

• If desired action,

then reward,

otherwise

no (or negative) reward.
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Place of Reinforcement Learning in the Learning Taxonomy

Image source:mathworks

Figure 1: Basic machine learning paradigms.
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Unsupervised Learning

Aims to find structures/clusters in unlabeled data.

Input data

Model
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Supervised Learning

Learning from training data of labeled examples provided by a knowledge-

able external supervisor.

These are footballs

Training data

Model

It's a 
football

Prediction

These are basketballs
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Reinforcement Learning

Learning from the feedback provided by the environment in response to

the model’s behavior to optimize the reward.

Input sequence

Model

Environment
Reward

It's a 
basketball

0

Input sequence

Model

Environment
Reward

It's a 
football

1

12



Examples of Reinforcement Learning

• Make a humanoid robot walk.

• Manage an investment portfolio.

• Play many different Atari games.

• Ad placement.

• Fly stunt manoeuvres in a helicopter.
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Features of Reinforcement Learning

• Learning through a reward signal.

• Feedback can be delayed.

• Interactions are often sequential.

• It is active, rather than passive.
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Distinguishing Factors of Reinforcement Learning

• Differences from supervised learning :

• No external supervisor, only a reward signal.

• No need to obtain representative and correct training samples.

• Differences from unsupervised learning :

• Goal-directed.

• Finding structures in input data not sufficient for maximizing the

reward.

• Exploration/exploitation dilemma.
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Exploration/Exploitation Dilemma

Image source:UC Berkeley AI course, lecture 11

• Exploit. Choose actions tried in the past and found to be rewarding.

• Explore. Choose unexplored actions to see if they are more

rewarding.

• Neither exploration nor exploitation can be pursued exclusively.

16
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Reinforcement Learning :

Problem Formulation



Reinforcement Learning : Agent and Environment

Agent
Environment

Observation

Action
Reward

• Receives observation o(t).

• Executes action a(t).

• Receives reward r(t).

• Emits observation o(t).

• Receives action a(t).

• Emits reward r(t).

• Horizon T : time step when the process ends.
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Elements of a Reinforcement Learning (RL) Problem

• State and action.

• Reward : Indicates what is good and bad for the agent in an

immediate sense.

• Value : Indicates long-term desirability of a state.

• Policy : Encoding of the agent’s behavior.

• Model : Interpretation of the environment’s behaviour.
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Elements of a RL Problem : State and Action

Image source:Chess.com

• State s ∈ S describes the current situation.

• Examples : Chess position, robot’s current position.

• Actions a ∈ A are the choices available to the agent.

• Actions are permitted to affect the future state.

19
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Elements of a RL Problem : Reward I

Image source:Chess.com

• A numerical feedback signal r(t).

• Indicates if the agent’s action a(t) was good i.e. defines the goal :

to maximize the cumulative sum of rewards.

• Reward hypothesis : Any goal can be formalized as the outcome of

maximizing a cumulative reward.
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Elements of a RL Problem : Reward II

Image source:Chess.com

• Dependent on the current state and the current action.

• The agent can only influence the reward through its actions.

• Examples of reward

• Manage an investment portfolio : +ve reward for every € gained,

−ve reward for every € lost.

• Make a humanoid robot walk : +ve reward for every forward step,

−ve reward for every fall.

• Ad placement : +ve reward for every click,

−ve reward for every time it is not clicked.

21
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Elements of a RL Problem : Reward III

Image source:Chess.com

• Rewards might be delayed.

• Greedy strategy : Make the locally optimal choice at each time step.

• Being greedy might not work : sometimes better to sacrifice short

term reward to gain more long-term reward.

22
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Elements of a RL Problem : Policy

• The agent’s way of behaving at a given time.

• Mapping π from states to actions.

• Deterministic πs = a.

• Stochastic πs(a) = P(a | s).
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Elements of a RL Problem : Value

• Values of states specify what is good in the long run.

• Total amount of reward an agent can expect to accumulate over the

future, starting from that state.

• Value v depends on the policy π.

• vπ(s) = E[r(t + 1) + r(t + 2) + r(t + 3) + . . . | π, s(t) = s]

• Infinite (or very large) horizon T? Trade-off of importance between

immediate vs long-term rewards - discount factor γ ∈ (0, 1).

• vπ(s) = E[r(t + 1) + γr(t + 2) + γ2r(t + 3) + . . . | π, s(t) = s]

• Can be used to evaluate desirability of states and choose between

actions.
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Elements of a RL Problem : Model

• Model is a representation of the environment’s behaviour.

• Reward function R provides the immediate reward given the current

state and action. R(s, a) = E[r(t + 1) | s(t) = s, a(t) = a].

• Transition function P provides the next state given the current state

and action. P(s ′ | s, a) = P(s(t + 1) = s ′ | s(t) = s, a(t) = a).
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• Transition function P provides the next state given the current state
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Figure 2: Model-based learning

Figure 3: Model-free learning
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An Example of a RL Problem I

Image source:DeepMind RL course

• Move from start state to goal state as quickly as possible.

• Reward : −1 per time step.

• State : agent’s location.

• Actions : ↑, ↓, ←, →.

26
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An Example of a RL Problem II

Image source:DeepMind RL course

• Arrows represent policy π(s) for each state s.

27

https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver


An Example of a RL Problem III

Image source:DeepMind RL course

• Numbers represent values vπ(s) of each state s.
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Break

We start again after a break.
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Measuring the Performance : Optimal Value Function

• Recall that,

undiscounted value for policy π is,

vπ(s) = E[r(t + 1) + r(t + 2) + r(t + 3) + . . . | π, s(t) = s],

discounted value for policy π is,

vπ(s) = E[r(t + 1) + γr(t + 2) + γ2r(t + 3) + . . . | π, s(t) = s]

Definition

The optimal value function v∗(s) = maxπvπ(s).

• The optimal value function specifies the best possible performance.
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Measuring the Performance : Optimal Policy

• There exists an optimal policy π∗ that is better than or equal to all

other policies1.

π∗ ≥ π,∀π

where π1 ≥ π2 if vπ1(s) ≥ vπ2(s),∀s

• An optimal policy π∗ achieves the optimal value function v∗(s).

vπ∗(s) = v∗(s).

• A RL problem is “solved” when the agent finds an optimal policy.

1For almost all the problems that we will encounter in this course.
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Measuring the Performance : Regret

• Even if the agent learns the optimal policy eventually, it still makes

mistakes during the learning process.

• Regret is the difference between the optimal (expected) rewards and

the agent’s (expected) rewards.

Regretπ = v∗(s)− vπ(s), where s is the starting state

• Regret is a measure of the total mistake cost.

• Minimizing regret equivalent to maximizing cumulative reward.
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Non-associative RL :

Multi-Armed Bandits



Multi-armed bandits

Image source:Microsoft research

• Learning to act in a single situation i.e. state.

• Agent faces repeated choice among K different actions/arms.

• After each choice, the learner receives a numerical reward.

• Goal : Maximize the cumulative reward or minimize the regret.
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Stationary Stochastic Bandits

• Reward for arm a drawn i.i.d. from an unknown stationary

distribution.

• Each action a ∈ A has expected or mean reward µa.

• Practical scenario : A doctor choosing between experimental drugs

for a series of samples exhibiting a disease.

• A variant : Non-stationary stochastic bandits - rewards are drawn

from distributions which may change over time.
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Adversarial Bandits

Image source:Microsoft research

• The assumption of stationary stochastic distributions is optimistic

and sometimes unrealistic.

• Pessimistic assumption : rewards are chosen adversarially.

• Oblivious adversary : rewards for all arms and all rounds are chosen

in advance.
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Dueling Bandits

• Relative feedback not absolute feedback.

• E.g. : “I like football more than tennis” instead of “I value football

at 48/50 and tennis at 33/50”.

Figure 4: DuckDuckGo search results Figure 5: Google search results

• Practical scenario : Information retrieval in search engines.

• Relative feedback by interleaved filtering [Radlinski and Joachims,

2007]
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Contextual Bandits

Figure 6: Google search results

• Observation of extra information (context) before choosing an

action.

• Practical scenario : News recommendation, ad selection.
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Associative RL: Markov Decision

Processes



History and State

• History is the sequence of observations, actions and rewards.

Ft = o(1), r(1), a(1), . . . , a(t − 1), o(t), r(t).

• Future depends on the history :

• Agent selects an action a(t).

• Environment selects a reward/observation.

• State is the information used to determine what happens next.

• Formally, state is a function of the history : s(t) = f (Ft).
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Markov Property

• “The future is independent of the past given the

present”.

• The state s(t) is Markov if and only if

P(s(t+1) |s(t)) = P(s(t+1) |s(t), s(t−1), . . . , s(1)).

• The present state is a sufficient statistic of the future.

Andrey
Markov(1856-
1922)
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Markov Process

A Markov process is a memory-less random process i.e. a sequence of

random states s(1), s(2), . . . with the Markov property.

Definition

A Markov process (or a Markov chain) is a tuple ⟨S,P⟩ where

• S is a (finite) set of states, and

• P is a state transition probability function,

Pss′ = P[s(t + 1) = s ′ | s(t) = s].
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Markov Decision Process

A Markov decision process (MDP) is a Markov process with rewards and

decisions.

Definition

A Markov decision process is a tuple ⟨S,A,R,P⟩ where

• S is a (finite) set of states,

• A is a (finite) set of actions,

• R(s, a) is a reward function,

• P is a state transition probability function,

Pa
ss′ = P[s(t + 1) = s ′ | s(t) = s, a(t) = a].

• Practical scenario : Learning to play chess.
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Discounted-reward Markov Decision Process

A Markov decision process (MDP) is a Markov process with rewards and

decisions.

Definition

A Markov decision process is a tuple ⟨S,A,R,P, γ⟩ where

• S is a (finite) set of states,

• A is a (finite) set of actions,

• R(s, a) is a reward function,

• P is a state transition probability function,

Pa
ss′ = P[s(t + 1) = s ′ | s(t) = s, a(t) = a], and

• γ ∈ (0, 1) is a discount factor.

• Practical scenario : Portfolio management. Why discounted?

Distant reward not as valuable as immediate reward due to inflation.
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Summary

• Introduction to reinforcement learning.

• Mathematical formulation of a RL problem.

• Formulating RL with multi-armed bandits and its variants.

• Formulating RL with Markov decision processes.
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Next Lecture

• Simple solutions to bandits (and why they are sub-optimal?)

• An optimal solution : Upper confidence bound (UCB) algorithm.

• Proving the performance bound for UCB.
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