Overview

Commercial Machine Translation (MT) systems can easily log explicit or implicit feedback from users. To avoid the risk of showing inferior translations, commercial MT systems want to employ exploration-free policies which only output the most likely translation and are thus deterministic.

We show that the inverse and reweighted propensity scoring estimators can lead to possible degeneracies in both stochastic and deterministic setups. Using doubly robust methods, these degeneracies can avoided.

In domain-adaptation experiments with simulated feedback, we can report improvements of up to 2 BLEU. Further, we can show that deterministic experiments are on a par with their stochastic counterparts due to implicit exploration.

Definitions

- collected: log $D = \{ (x_t, y_t, \delta_t) \}_{t=1}^T$ where a logging system μ generated y_t given x_t, and a reward $\delta_t \in \{0,1\}$ is observed
- stochastic logging: record probability $\mu(y_t|x_t)$
- probability of current system: $\pi_w(y_t|x_t)$
- direct method (DM) predictor $\hat{\delta}$: can predict a reward for any input sequence

Objectives

Inverse Propensity Scoring (IPS)/Deterministic Propensity Matching (DPM)

$\hat{V}_{\text{IPS/DM}}(\pi_w) = \frac{1}{N} \sum_{t=1}^N \delta_t \rho_u(y_t|x_t)$

stochastic case $\rho_u(y_t|x_t) = \pi_w(y_t|x_t) \mu(y_t|x_t)$

deterministic case $\rho_u(y_t|x_t) = \pi_w(y_t|x_t)$ as $\mu(y_t|x_t) = 1$

Problem 1

- importance sampling is disabled
- y_t is the most likely translation under μ → exploration seems to be missing

Solution to 1

implicit exploration: despite the deterministic logging, there is enough exploration because of the differing input context → deterministic logging can keep up with its stochastic counterpart [1]

Problem 2

Theorem 1: $\max_{\pi_{w}} \hat{V}_{\text{IPS}}$ and $\max_{\pi_{w}} \hat{V}_{\text{DM}}$ if $\forall (y_t,x_t,\delta_t) \in D$: $\pi_w(y_t|x_t) = 1 \land \delta_t > 0$.

$\hat{V}_{\text{IPS/DM}}(\pi_w)$ is at maximum if all entries in the log with non-zero rewards receive probability 1 → increasing probability for low δ_t is undesired

Solution to 2

+ Multiplicative Control Variate [4]: Reweighting (+R) defines a probability distribution over the log → increasing probability for low δ_t will now decrease the objective as desired $\hat{V}_{\text{IPS}/\text{R}/\text{DM}}(\pi_w) = \frac{1}{N} \sum_{t=1}^N \delta_t \rho_u(y_t|x_t)$ with $\rho_u(y_t|x_t) = \frac{\rho_w(y_t|x_t)}{\sum \rho_w(y_t|x_t)}$

Problem 3

Definition Let $D_{\text{max}} = \max_{\pi} D$, then $\Delta = D - D_{\text{max}}$.

Theorem 2: $\max_{\pi_{w}} \hat{V}_{\text{IPS}/\text{R}/\text{DM}}$ and $\max_{\pi_{w}} \hat{V}_{\text{DPM}/\text{R}/\text{DM}}$ if $\exists (x_t, y_t, \delta_{\text{max}}) \in D_{\text{max}}$: $\pi_t \in (0,1) \land \forall (y_t,x_t,\delta_t) \in D_{\text{max}}: \pi_t = 0$.

$\hat{V}_{\text{IPS}/\text{R}/\text{DM}}(\pi_w)$ is at maximum if the probability $\pi_w(y_t|x_t)$ of the highest δ_t is greater than 0 and the rest is 0 → avoids logged data and potentially bad alternatives take up the probability mass of π_w

Solution to 3

+ Additive Control Variate [2]: Doubly Robust (DR) / Doubly Controlled (DC) use a DM predictor to evaluate the top scoring translations for each x_t → avoiding logged data only possible if good alternatives take its place $\hat{V}_{\text{DR}/\text{DC}}(\pi_w) = \frac{1}{N} \sum_{t=1}^N \left(\delta_t - \bar{c} \hat{\delta}(x_t, y_t) + \hat{c} \sum_{y \neq y_t} \hat{\delta}(x_t, y) \rho_u(y|x_t) \right)$

The optimal \hat{c} can be derived: $\hat{c} = \frac{\text{Cov}(\hat{\delta}, \hat{\cdot})}{\text{Var}(\hat{\delta})}$

$\hat{V}_{\text{DR}/\text{DC}}(\pi_w)$ is $\hat{V}_{\text{DR}/\text{DC}}(\pi_w)$ with $\hat{c} = 1$ as defined by [2].

Experiments [3]

Translation System. A Gibbs model that, given an input sentence x_t, defines probability distribution over all possible output sentences y_t.

$\pi_u(y_t|x_t) = \frac{e^{w^{o}}(\phi(o(x_t,y_t)))}{\sum_{y \neq y_t} e^{w^{o}}(\phi(o(x_t,y)))}$.

The number of possible output sentences may be very large. For example, assuming an output vocabulary of 90,000 words and a sentence length of 200, there are $90,000^{200}$ possible outputs. Thus, the search for the most probable translation is often approximated, e.g. via beam search.

Setup. Domain adaptation from Europal (EP) to TED (de-en) and to News (fr-en) using phrase-based decoder cdec and empirical risk minimization. Oracle systems where trained on references and the tuning algorithm MERT.

Log Creation. Logs were created by training a model on out-of-domain data and using this model to translate in-domain data. Feedback is simulated with per-sentence BLEU which is based on n-gram matching with regards to the gold translation.

DM predictor $\hat{\delta}$. The predictor is a Scikit random forest model trained using the decoder’s features as input and per-sentence BLEU as the output.

Take Away

- counterfactual learning works for MT despite large action space
- control variates fix problems of the simpler objectives
- deterministic logging as good as stochastic due to implicit exploration → great advantage for e-commerce MT

Acknowledgements

This research was supported in part by the German research foundation (DFG).

References