

Variational Regret Bounds for Reinforcement Learning

Introduction

- In a standard RL problem, the state-transition dynamics and the reward functions are time-invariant.
- → Our setting: Both the transition dynamics and the reward functions are dependent on the current time step.

Problem setting

- For t = 1, ..., T, the learner chooses an **action** a_t in the current state s_t ,
 - receives a reward r_t with mean $\bar{r}_t(s_t, a_t)$,
 - and observes a transition to the next state s_{t+1} according to $p_t(s_{t+1}|s_t, a_t)$.
- For t = 1, ..., T, let **MDP** $M_t = (S, A, \bar{r}_t, p_t)$ denote the true MDP at time t. Further, let $S := |\mathcal{S}|$ and $A := |\mathcal{A}|$.
- Assumption: For each $M_{t\{1 \leq t \leq T\}}$, the **diameter** (minimal expected time it takes to get from any state to any other state [1]) is upper bounded by D.
- \rightarrow Variation: For time horizon T,

$$egin{aligned} V_T^r &:= \sum_{t=1}^{T-1} \max_{s,a} ig| ar{r}_{t+1}(s,a) - ar{r}_t(s,a) ig| \ V_T^p &:= \sum_{t=1}^{T-1} \max_{s,a} ig\| p_{t+1}(\cdot|s,a) - p_t(\cdot|s,a) ig\| \end{aligned}$$

• Goal: Minimize regret

$$R_T := v_T^*(s_1) - \sum_{t=1}^T r_t$$

where $v_T^*(s_1)$ is the optimal expected T-step reward achievable by any policy starting in the initial state s_1 .

Main result : Regret Bound

With probability $1 - \delta$, the regret of variation-aware UCRL with restarts (Algorithm 2) after any T steps is bounded as

 $R_T \leq 74 \cdot DS(V_T^r + V_T^p)^{1/3} T^{2/3} \sqrt{A \log\left(\frac{16S^2 A T^5}{\delta}\right)}.$

→ Optimal wrt time and variation parameters. For (the simpler) bandit setting, a lower bound on the variational regret given by Besbes et al. (2014) [3] shows that our bound is optimal with respect to time and the variation.

Ronald Ortner, Pratik Gajane, Peter Auer

{ronald.ortner, pratik.gajane, auer}@unileoben.ac.at Montanuniversität Leoben

Algorithm 1: Variation-aware UCRL

- 1: Input: S, A, δ , variation parameters \tilde{V}^r, \tilde{V}^p .
- 2: Initialization: Set current time step t := 1.
- 3: for episode $k = 1, \ldots$ do
- Set episode start $t_k := t$. Let $v_k(s, a) =$ state-action counts for visits in k, and $N_k(s, a) = \text{counts for visits before episode } k$.
- For $s, s' \in \mathcal{S}$ and $a \in \mathcal{A}$, compute estimates 5:

$$\hat{r}_k(s,a) := \frac{\sum_{\tau=1}^{t_k-1} r_\tau \cdot 1_{s_\tau=s,a_\tau=a}}{\max(1, N_k(s,a))},$$
$$\hat{p}_k(s'|s,a) := \frac{\#\{\tau < t_k : s_\tau = s, a_\tau = a, s_{\tau+1} = s'\}}{\max(1, N_k(s,a))}$$

Compute policy $\tilde{\pi}_k$:

Let \mathcal{M}_k be the set of plausible MDPs \tilde{M} with rewards $\tilde{r}(s, a)$ 6: and transition probabilities $\tilde{p}(\cdot|s, a)$ satisfying

$$\tilde{r}(s,a) - \hat{r}_k(s,a) \leqslant \tilde{V}^r + \sqrt{\frac{8\log(8SAt_k^3/\delta)}{\max(1,N_k(s,a))}}, \qquad (1)$$

$$\delta(\cdot|s,a) - \hat{p}_k(\cdot|s,a) \|_1 \leqslant \tilde{V}^p + \sqrt{\frac{8S\log(8SAt_k^3/\delta)}{\max(1,N_k(s,a))}}. \qquad (2)$$

- Use extended value iteration [1] to find an optimal policy $\tilde{\pi}_k$ for an optimistic MDP $M_k \in \mathcal{M}_k$ such that $\rho(\tilde{M}_k, \tilde{\pi}_k) = \max_{M' \in \mathcal{M}_k} \rho^*(M'),$ where $\rho^*(M')$ is the optimal average reward of M'. Execute policy $\tilde{\pi}_k$: while $v_k(s_t, \tilde{\pi}_k(s_t)) < \max(1, N_k(s_t, \tilde{\pi}_k(s_t))),$ do 8:
- Choose action $a_t = \tilde{\pi}_k(s_t)$. Obtain reward r_t , and observe s_{t+1} .

Set
$$t = t + 1$$
.

end while

9: end for

- Algorithm 2 : Variation-aware UCRL with restarts
- 1: Input: S, A, δ , variation V_T^r and V_T^p .
- 2: Initialization: Set current time step $\tau := 1$.
- 3: for phase i = 1, ... do
- Perform variation-aware UCRL with confidence parameter $\delta/2\tau^2$ 4: for $\theta_i := \left| \frac{i^2}{(V_T^r + V_T^p)^2} \right|$ steps.
- Set $\tau = \tau + \theta_i$.
- 6: end for

 $\left\| \right\|_{1}$

Solution sketch

- know the variation V_T^r and V_T^p .

Analysis sketch

- MDP M_t .

where D = maximum of the diameters of M and M'.

- Regret of variation-aware UCRL:
- arrive at the main result.

Conclusion and Further Directions

- considered problem setting.

Key references

- |2| tion, COLT 2019.

• Devise variation-aware UCRL (Algorithm 1) by adapting confidence intervals (eq. (1) and eq. (2)) to account for the variation in mean rewards and transition probabilities respectively.

• Restart variation-aware UCRL according to a suitable scheme (cf. line 4 in Algorithm 2). For this, the algorithm needs to

• **Optimism:** With high probability, the set of plausible MDPs (line 6 in Algorithm 1) computed at any time t contains the true

• Perturbation bound: For any two MDPs M and M' whose mean rewards differ by at most Δ^r and whose L1-norm of the transition probabilities is at most Δ^p , it holds that

 $|\rho^*(M) - \rho^*(M')| \leq \Delta^r + D\Delta^p,$

With probability $1 - \delta$, the regret of variation-aware UCRL is bounded by $32DS_{\Lambda}/AT \log\left(\frac{8SAT^3}{\delta}\right) + 2T(DV_T^p + V_T^r).$

• Regret of variation-aware UCRL with restarts: We sum up the regret over all the phases of variation-aware UCRL to

• Performance guarantees that are optimal in time and variation demonstrate that our algorithm is a competent solution for the

• Recently, variational bounds for the (contextual) bandit setting have been derived when the variation is unknown [2]. Achieving such bounds in RL is a worthwhile direction to pursue.

Thomas Jaksch, Ronald Ortner and Peter Auer: Near-optimal Regret Bounds for Reinforcement Learning, JMLR 2010.

Peter Auer, Yifang Chen, Pratik Gajane, Chung-Wei Lee, Haipeng Luo, Ronald Ortner, Chen-Yu Wei: Achieving Optimal Dynamic Regret for Non-stationary Bandits without Prior Informa-

Omar Besbes, Yonatan Gur, and Assaf Zeevi: Stochastic multiarmed-bandit problem with non-stationary rewards. NIPS 2014.