A SHUIIG IV HUUW APPROACH OF ALTH VIDES WITH AFOID AT US AND A SHUIIG NEW AFOID ACH OF ALTH VIDES WITH AFOID AT US AND A SHUI AFOID ACH SHUI and Transitions

Introduction and motivation

- ▶ MDP : standard model for problems in decision making with uncertainty like RL.
- ▶ In classical MDPs, stochastic state-transition dynamics and reward functions remain fixed.
- \rightarrow Our setting (Switching-MDP): transition dynamics and reward functions change a certain number of times.

Problem Setting

- function F.
- Learner selects action a in state s at time $t = 1, \ldots, T$
 - \triangleright learner receives reward r_t drawn from dist. with mean $\bar{r}(s, a)$.
 - \triangleright environment transitions into next state $s' \in \mathcal{S}$ according to $p(s' \mid s, a)$.
- Diameter $D(M_i) = \max_{s_1, s_2 \in S, s_1 \neq s_2} \min_{\pi \in \Pi} \mathbb{E}[\tau(s_1, s_2, M_i, \pi)].$
- Switching-MDP $\mathbf{M} = (\mathbb{S} = (M_0, \dots, M_l), c = (c_1, \dots, c_l))$
- At $t < c_1$, **M** is in its initial configuration $M_0(\mathcal{S}, \mathcal{A}, p_0, F_0)$.
- At time step $c_i \leq t < c_{i+1}$, **M** is in configuration $M_i(\mathcal{S}, \mathcal{A}, p_i, F_i)$.
- \rightarrow Goal of algorithm \mathfrak{A} starting from an initial state s Minimize regret $\Delta(\mathbf{M}, \mathfrak{A}, s, T) = \sum_{t=1}^{T} \left(\rho_{\mathbf{M}}^{*}(t) - r_{t} \right)$ $\rho_{\mathbf{M}}^{*}(t) \coloneqq$ Optimal average reward of M which is active at time t.

Proposed algorithm: SW-UCRL

- **Key idea:** Modify UCRL2 to use only the last W samples for computing the estimates.
- 1: Input: A confidence parameter $\delta \in (0, 1), \mathcal{S}, \mathcal{A}$ and window size W.
- 2: Initialization: Set t := 1, and observe the initial state s_1 .
- For episodes $k = 1, 2, \ldots$ do
- 3: Initialize episode k:
 - Set the start time of episode $k, t_k := t$.
 - states $s \in \mathcal{S}$ and actions $a \in \mathcal{A}$,

Compute estimates $\hat{r}_k(s,a) := \frac{R_k(s,a)}{\max\{1, N_k(s,a)\}}, \hat{p}_k$ Compute policy $\tilde{\pi}_k$:

4. Let \mathcal{M}_k be the set of all MDPs with state space \mathcal{S} and action space \mathcal{A} , and with transition probabilities $\tilde{p}(\cdot|s,a)$, close to $\hat{p}_k(\cdot|s,a)$, and rewards $\tilde{r}(s,a) \in [0,1]$ close to $\hat{r}_k(s,a)$, that is,

Pratik Gajane, Ronald Ortner, Peter Auer

pratik.gajane@unileoben.ac.at, ronald.ortner@unileoben.ac.at, auer@unileoben.ac.at Montanuniversitat Leohen

$$N_k(s,a) := \# \{t_k - W \leq \tau$$

ii For all $s, s' \in S$ and $a \in A$, set the observed cumulative rewards when action a was executed in the number of times that resulted into the next state being s' during W time steps prior to episode k,

$$R_k(s,a) := \sum_{\tau=t_k-W}^{t_k-1} r_\tau \mathbb{1}\{s_\tau = s, a_\tau = a\} \qquad P_k(s,a,s')$$
$$(s'|s,a) := \frac{P_k(s,a,s')}{\max\{1,N_k(s,a)\}}$$

$$\left| \tilde{\alpha}(\alpha, \alpha) - \hat{\alpha}(\alpha, \alpha) \right| \leq 1$$

Analysis of SW-UCRL

 $2lW + 66.12 \left[\frac{T}{\sqrt{W}} \right] DS \sqrt{A \log\left(\frac{T}{\delta} \right)},$ $38.94 \cdot l^{1/3} T^{2/3} D^{2/3} S^{2/3} \left(A \log \left(\frac{T}{\delta} \right) \right)^{1/3}.$

Theorem 1. Given a switching-MDP with l changes, the regret of SW-UCRL using window size W is upper-bounded with probability at least $1 - \delta$ by where D = max of diameters of constituent MDPs. Corollary 1. Given a switching-MDP with l changes, the regret of SW-UCRL using $W^* =$ $\left(\frac{16.53}{l}TDS_{\sqrt{A\log\left(\frac{T}{\delta}\right)}}\right)^{2/3}$ is upper-bounded with probability at least $1-\delta$ by <u>**Contribution**</u>: Improves upon the regret bound for UCRL2 with restarts (Jaksch et al. (2010)) in terms of

D, S and A.

Further Directions

- Variation-dependent regret bound.
- Link between allowable variation in rewards and state-transition probabilities and minimal achievable regret.
- Refine the episode-stopping criterion.

Key reference

[Jaksch, Thomas and Ortner, Ronald and Auer, Peter(2010)] Near-optimal Regret Bounds for Reinforcement Learning

ii For all (s, a) in $\mathcal{S} \times \mathcal{A}$ initialize the state-action counts for episode k for all the number of times any action action a was executed in state s in W time steps prior to episode k for all the

 $\langle t_k : s_{\tau} = s, a_{\tau} = a \}$

') := $\# \{ t_k - W \leq \tau < t_k : s_\tau = s, a_\tau = a, s_{\tau+1} = s' \}$

/
$$7\log(2SAt_k/\delta)$$
 and