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Classical Markov Decision Process (MDP)

e MDP : standard model for problems in decision making with
uncertainty like RL.
e Classical MDP M(S, A, p, F) with state space S, action space A,
transition probability p, reward function F.
e Learner selects action a in state s at time t=1,..., T
e learner receives reward r; drawn from dist. with mean 7(s, a).
e environment transitions into next state s’ € S according to
p(s’ | s, a).
e |n classical MDPs, stochastic state-transition dynamics and reward
functions remain fixed (Bartlett and Tewari [2009], Burnetas and
Katehakis [1997], Jaksch et al. [2010]).
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Switching-MDP

=» Our setting (Switching-MDP): transition dynamics and reward
functions change a certain number of times (abrupt changes)

e Switching-MDP M = (S = (Mo, ..., M)),c = (c1,...,¢c))

e At t < ¢q, Mis in its initial configuration My(S, A, po, Fo) i.e. My is
active.

e At time step ¢; < t < ¢j11, M is in configuration M;(S, A, p;, F;) i.e.
M; is active.

=» Goal of algorithm 2l starting from an initial state s
Minimize regret A(M,2(,s, T) = Z;l (Pfa(t) = re)

pm(t) == Optimal average reward of the active MDP.
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Related work

e MDPs in which the state-transition probabilities change arbitrarily
but the reward functions remain fixed (Nilim and El Ghaoui [2005],
Xu and Mannor [2006]).

e MDPs with fixed state-transition probabilities and changing reward
functions Even-dar et al. [2005]
e Yuan Yu and Mannor [2009a] and Yuan Yu and Mannor [2009b]

consider arbitrary changes in the reward functions and arbitrary, but
bounded, changes in the state-transition probabilities.

e Abbasi et al. [2013] consider MDP problems with (oblivious)
adversarial changes in state-transition probabilities and reward
functions.
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Proposed algorithm: SW-UCRL

o Key idea: Modify UCRL2 to use only the last W samples for
computing the estimates.

e Input: A confidence parameter 6 € (0,1) and window size W.

e Initialization: Set t := 1, and observe the initial state s;.
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SW-UCRL: Episode Initialization

1. Set the start time of episode k, t;, := t.
2. Forall (s,a) in S x A, set v(s,a):=0

Ni(s,a) =#{txk —W <7 <ty:s =s,a, = a}

3. Foralls,s € Sand ae€ A,

te—1
Rk (s,a) :== Z r-1{s, =s,a, = a}
T=t,—W

Pi(s,a,8) =#{tk —W <7< ty:s, =s,a- =a,5.41 =5}

4. Compute estimates

A L Rk(57 a)
fi(5:3) = T, N5, 3)7
. Pi(s,a,s’
pr (s']s,a) = k( )

max{1, Ni(s, a)} 6



SW-UCRL: Policy Computation

1. Let My be the set of all MDPs with state space S and action space
A, and with transition probabilities p (-|s, a) close to p (:|s, a), and
rewards 7(s, a) € [0, 1] close to F (s, a), that is,

7 log(2SAt /5)
2max{1,N(s,a)}

145 log(2At, /)
<\ et e - )

and (1)

IN

|F(s,a) — F (s, a) |

[ ¢1s,2) e (1.3

2. Use extended value iteration to find a near optimal policy s and an
optimistic MDP M, € M



SW-UCRL: Policy Execution

Episode stopping criterion: number of occurrences of any (s, a) in the
episode (vk(s,a)) = number of occurrences of same (s, a) in W
observations before episode start(N(s, a))

While v (s, Tk (se)) < max{1, Ni(s¢, 7x(st))} do

e Choose action a; = 7x(s;), obtain reward r.

e Observe next state sy 1.

Update vi(st, ar) == vi(st, a¢) + 1.
Set t :=t+ 1.



Performance Bounds

Theorem (Regret Upper Bound)

Given a switching-MDP with | changes, the regret of SW-UCRL using
window size W is upper-bounded with probability at least 1 — § by

T / T

where D = max of diameters of constituent MDPs.

e Optimal value of W:

2/3
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Performance Bounds

Corollary (Regert Upper Bound using W*)
Given a switching-MDP with | changes, the regret of SW-UCRL using

2/3
W = (@ TDSy/Alog (%)) is upper-bounded with probability at
least 1 — § by

1/3
38.94 - [V/3T2/3p2/352/3 (A log (;)) .

Contribution: Improves upon the regret bound for
UcCRL2 with restarts (Jaksch et al.(2010) Jaksch
et al. [2010]) in terms of D, S and A.
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Performance Bounds

Corollary (Sample Complexity Bound)

Given a switching-MDP problem with | changes, the average per-step
regret of SW-UCRL using W* is at most € with probability at least
1 — 0 after any T steps with

ID?S?A .94)3ID?S%A
T >2-(38.94)%. f log <(38 S )35 S )
€ €



Experiments
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(a) Average regret plot for 2 changes (b) Average regret plot for 4 changes

Figure 1: Average regret plots for switching-MDPs

Switching-MDPs with S = 5,A = 3, and T = 100000.

| changes happen at every [%] time steps.

e SW-UCRL with optimum window size W*

e For comparison : UCRL2 with restarts (UCRL2-R) and UCRL2 with
restarts after every W* time steps (UCRL2-RW)
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Summary and Future Directions




Summary and Future Directions

e SW-UCRL: a competent solution for regret-minimization on
switching-MDPS.

Variation-dependent regret bound?

Link between allowable variation in rewards and transition

probabilities and minimal achievable regret? (like Besbes et al.
[2014] for bandits)

Refine episode-stopping criterion?

13



Thank you all.
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SW-UCRL: Policy computation

1. Let My be the set of all MDPs with state space S and action space
A, and with transition probabilities p (-|s, a) close to pi (+|s, a), and
rewards 7(s, a) € [0, 1] close to F (s, a), that is,

= ~ 7 log(2SAt /5
|F(s,a) — P (s,a) | < m and  (3)

~ A~ 145 log(2At, /)
Hp ('|5’a) — Pk (.|S7 a) Hl = max{lg,Nk(sk,a)} : (4)

2. Use extended value iteration to find a policy near optimal policy 7«
and an optimistic MDP l\;lk € My such that

“ . o~ / /
Pic = min p(Mi, T, s) = max (M@, ) =

%‘H
x
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