A Sliding-Window Approach for RL in MDPs with Arbitrarily Changing Rewards and Transitions

Pratik Gajane
Dec 28, 2018

Formalization

Classical Markov Decision Process (MDP)

- MDP : standard model for problems in decision making with uncertainty like RL.

Classical Markov Decision Process (MDP)

- MDP : standard model for problems in decision making with uncertainty like RL.
- Classical MDP $M(\mathcal{S}, \mathcal{A}, p, F)$ with state space \mathcal{S}, action space \mathcal{A}, transition probability p, reward function F.

Classical Markov Decision Process (MDP)

- MDP : standard model for problems in decision making with uncertainty like RL.
- Classical MDP $M(\mathcal{S}, \mathcal{A}, p, F)$ with state space \mathcal{S}, action space \mathcal{A}, transition probability p, reward function F.
- Learner selects action a in state s at time $t=1, \ldots, T$
- learner receives reward r_{t} drawn from dist. with mean $\bar{r}(s, a)$.
- environment transitions into next state $s^{\prime} \in \mathcal{S}$ according to $p\left(s^{\prime} \mid s, a\right)$.

Classical Markov Decision Process (MDP)

- MDP : standard model for problems in decision making with uncertainty like RL.
- Classical MDP $M(\mathcal{S}, \mathcal{A}, p, F)$ with state space \mathcal{S}, action space \mathcal{A}, transition probability p, reward function F.
- Learner selects action a in state s at time $t=1, \ldots, T$
- learner receives reward r_{t} drawn from dist. with mean $\bar{r}(s, a)$.
- environment transitions into next state $s^{\prime} \in \mathcal{S}$ according to $p\left(s^{\prime} \mid s, a\right)$.
- In classical MDPs, stochastic state-transition dynamics and reward functions remain fixed (Bartlett and Tewari [2009], Burnetas and Katehakis [1997], Jaksch et al. [2010]).

Switching-MDP

\rightarrow Our setting (Switching-MDP): transition dynamics and reward functions change a certain number of times (abrupt changes)

- Switching-MDP $\mathbf{M}:=\left(\mathbb{S}=\left(M_{0}, \ldots, M_{l}\right), c=\left(c_{1}, \ldots, c_{l}\right)\right)$

Switching-MDP

\rightarrow Our setting (Switching-MDP): transition dynamics and reward functions change a certain number of times (abrupt changes)

- Switching-MDP $\mathbf{M}:=\left(\mathbb{S}=\left(M_{0}, \ldots, M_{l}\right), c=\left(c_{1}, \ldots, c_{l}\right)\right)$
- At $t<c_{1}, \mathbf{M}$ is in its initial configuration $M_{0}\left(\mathcal{S}, \mathcal{A}, p_{0}, F_{0}\right)$ i.e. M_{0} is active.

Switching-MDP

\rightarrow Our setting (Switching-MDP): transition dynamics and reward functions change a certain number of times (abrupt changes)

- Switching-MDP $\mathbf{M}:=\left(\mathbb{S}=\left(M_{0}, \ldots, M_{l}\right), c=\left(c_{1}, \ldots, c_{l}\right)\right)$
- At $t<c_{1}, \mathbf{M}$ is in its initial configuration $M_{0}\left(\mathcal{S}, \mathcal{A}, p_{0}, F_{0}\right)$ i.e. M_{0} is active.
- At time step $c_{i} \leq t<c_{i+1}, \mathbf{M}$ is in configuration $M_{i}\left(\mathcal{S}, \mathcal{A}, p_{i}, F_{i}\right)$ i.e. M_{i} is active.

Switching-MDP

\rightarrow Our setting (Switching-MDP): transition dynamics and reward functions change a certain number of times (abrupt changes)

- Switching-MDP $\mathbf{M}:=\left(\mathbb{S}=\left(M_{0}, \ldots, M_{l}\right), c=\left(c_{1}, \ldots, c_{l}\right)\right)$
- At $t<c_{1}, \mathbf{M}$ is in its initial configuration $M_{0}\left(\mathcal{S}, \mathcal{A}, p_{0}, F_{0}\right)$ i.e. M_{0} is active.
- At time step $c_{i} \leq t<c_{i+1}, \mathbf{M}$ is in configuration $M_{i}\left(\mathcal{S}, \mathcal{A}, p_{i}, F_{i}\right)$ i.e. M_{i} is active.
\rightarrow Goal of algorithm \mathfrak{A} starting from an initial state s

$\rho_{\mathrm{M}}^{*}(t):=$ Optimal average reward of the active MDP.

Related work

- MDPs in which the state-transition probabilities change arbitrarily but the reward functions remain fixed (Nilim and El Ghaoui [2005], Xu and Mannor [2006]).

Related work

- MDPs in which the state-transition probabilities change arbitrarily but the reward functions remain fixed (Nilim and El Ghaoui [2005], Xu and Mannor [2006]).
- MDPs with fixed state-transition probabilities and changing reward functions Even-dar et al. [2005]

Related work

- MDPs in which the state-transition probabilities change arbitrarily but the reward functions remain fixed (Nilim and El Ghaoui [2005], Xu and Mannor [2006]).
- MDPs with fixed state-transition probabilities and changing reward functions Even-dar et al. [2005]
- Yuan Yu and Mannor [2009a] and Yuan Yu and Mannor [2009b] consider arbitrary changes in the reward functions and arbitrary, but bounded, changes in the state-transition probabilities.

Related work

- MDPs in which the state-transition probabilities change arbitrarily but the reward functions remain fixed (Nilim and El Ghaoui [2005], Xu and Mannor [2006]).
- MDPs with fixed state-transition probabilities and changing reward functions Even-dar et al. [2005]
- Yuan Yu and Mannor [2009a] and Yuan Yu and Mannor [2009b] consider arbitrary changes in the reward functions and arbitrary, but bounded, changes in the state-transition probabilities.
- Abbasi et al. [2013] consider MDP problems with (oblivious) adversarial changes in state-transition probabilities and reward functions.

Proposed algorithm: SW-UCRL

Proposed algorithm: SW-UCRL

- Key idea: Modify Ucrl2 to use only the last W samples for computing the estimates.
- Input: A confidence parameter $\delta \in(0,1)$ and window size W.
- Initialization: Set $t:=1$, and observe the initial state s_{1}.

SW-UCRL: Episode Initialization

1. Set the start time of episode $k, t_{k}:=t$.
2. For all (s, a) in $\mathcal{S} \times \mathcal{A}$, set $v_{k}(s, a):=0$

$$
N_{k}(s, a):=\#\left\{t_{k}-W \leq \tau<t_{k}: s_{\tau}=s, a_{\tau}=a\right\}
$$

SW-UCRL: Episode Initialization

1. Set the start time of episode $k, t_{k}:=t$.
2. For all (s, a) in $\mathcal{S} \times \mathcal{A}$, set $v_{k}(s, a):=0$

$$
N_{k}(s, a):=\#\left\{t_{k}-W \leq \tau<t_{k}: s_{\tau}=s, a_{\tau}=a\right\}
$$

3. For all $s, s^{\prime} \in \mathcal{S}$ and $a \in \mathcal{A}$,

$$
R_{k}(s, a):=\sum_{\tau=t_{k}-w}^{t_{k}-1} r_{\tau} \mathbb{1}\left\{s_{\tau}=s, a_{\tau}=a\right\}
$$

$$
P_{k}\left(s, a, s^{\prime}\right):=\#\left\{t_{k}-W \leq \tau<t_{k}: s_{\tau}=s, a_{\tau}=a, s_{\tau+1}=s^{\prime}\right\}
$$

SW-UCRL: Episode Initialization

1. Set the start time of episode $k, t_{k}:=t$.
2. For all (s, a) in $\mathcal{S} \times \mathcal{A}$, set $v_{k}(s, a):=0$

$$
N_{k}(s, a):=\#\left\{t_{k}-W \leq \tau<t_{k}: s_{\tau}=s, a_{\tau}=a\right\}
$$

3. For all $s, s^{\prime} \in \mathcal{S}$ and $a \in \mathcal{A}$,

$$
\begin{gathered}
R_{k}(s, a):=\sum_{\tau=t_{k}-W}^{t_{k}-1} r_{\tau} \mathbb{1}\left\{s_{\tau}=s, a_{\tau}=a\right\} \\
P_{k}\left(s, a, s^{\prime}\right):=\#\left\{t_{k}-W \leq \tau<t_{k}: s_{\tau}=s, a_{\tau}=a, s_{\tau+1}=s^{\prime}\right\}
\end{gathered}
$$

4. Compute estimates

$$
\begin{aligned}
\hat{r}_{k}(s, a) & :=\frac{R_{k}(s, a)}{\max \left\{1, N_{k}(s, a)\right\}} \\
\hat{p}_{k}\left(s^{\prime} \mid s, a\right) & :=\frac{P_{k}\left(s, a, s^{\prime}\right)}{\max \left\{1, N_{k}(s, a)\right\}}
\end{aligned}
$$

SW-UCRL: Policy Computation

1. Let \mathcal{M}_{k} be the set of all MDPs with state space \mathcal{S} and action space \mathcal{A}, and with transition probabilities $\tilde{p}(\cdot \mid s, a)$ close to $\hat{p}_{k}(\cdot \mid s, a)$, and rewards $\tilde{r}(s, a) \in[0,1]$ close to $\hat{r}_{k}(s, a)$, that is,

$$
\begin{align*}
\left|\tilde{r}(s, a)-\hat{r}_{k}(s, a)\right| & \leq \sqrt{\frac{7 \log \left(2 S A t_{k} / \delta\right)}{2 \max \left\{1, N_{k}(s, a)\right\}}} \text { and } \tag{1}\\
\left\|\tilde{p}(\cdot \mid s, a)-\hat{p}_{k}(\cdot \mid s, a)\right\|_{1} & \leq \sqrt{\frac{14 S \log \left(2 A t_{k} / \delta\right)}{\max \left\{1, N_{k}(s, a)\right\}}} \tag{2}
\end{align*}
$$

2. Use extended value iteration to find a near optimal policy $\tilde{\pi}_{k}$ and an optimistic MDP $\tilde{M}_{k} \in \mathcal{M}_{k}$

SW-UCRL: Policy Execution

Episode stopping criterion: number of occurrences of any (s, a) in the episode $\left(v_{k}(s, a)\right)=$ number of occurrences of same (s, a) in W observations before episode $\operatorname{start}\left(N_{k}(s, a)\right)$

While $v_{k}\left(s_{t}, \tilde{\pi}_{k}\left(s_{t}\right)\right)<\max \left\{1, N_{k}\left(s_{t}, \tilde{\pi}_{k}\left(s_{t}\right)\right)\right\}$ do

- Choose action $a_{t}=\tilde{\pi}_{k}\left(s_{t}\right)$, obtain reward r_{t}.
- Observe next state s_{t+1}.
- Update $v_{k}\left(s_{t}, a_{t}\right):=v_{k}\left(s_{t}, a_{t}\right)+1$.
- Set $t:=t+1$.

Performance Bounds

Theorem (Regret Upper Bound)

Given a switching-MDP with I changes, the regret of SW-UcrL using window size W is upper-bounded with probability at least $1-\delta$ by

$$
2 / W+66.12\left\lceil\frac{T}{\sqrt{W}}\right\rceil D S \sqrt{A \log \left(\frac{T}{\delta}\right)}
$$

where $D=\max$ of diameters of constituent MDPs.

- Optimal value of W :

$$
W^{*}=\left(\frac{16.53}{l} T D S \sqrt{A \log \left(\frac{T}{\delta}\right)}\right)^{2 / 3}
$$

Performance Bounds

Corollary (Regert Upper Bound using W^{*})

Given a switching-MDP with I changes, the regret of SW-Ucrl using $W^{*}=\left(\frac{16.53}{I} T D S \sqrt{A \log \left(\frac{T}{\delta}\right)}\right)^{2 / 3}$ is upper-bounded with probability at least $1-\delta$ by

$$
38.94 \cdot I^{1 / 3} T^{2 / 3} D^{2 / 3} S^{2 / 3}\left(A \log \left(\frac{T}{\delta}\right)\right)^{1 / 3}
$$

Performance Bounds

Corollary (Regert Upper Bound using W^{*})

Given a switching-MDP with I changes, the regret of SW-UcRL using $W^{*}=\left(\frac{16.53}{I} T D S \sqrt{A \log \left(\frac{T}{\delta}\right)}\right)^{2 / 3}$ is upper-bounded with probability at least $1-\delta$ by

$$
38.94 \cdot I^{1 / 3} T^{2 / 3} D^{2 / 3} S^{2 / 3}\left(A \log \left(\frac{T}{\delta}\right)\right)^{1 / 3}
$$

Contribution: Improves upon the regret bound for UcrL2 with restarts (Jaksch et al.(2010) Jaksch et al. [2010]) in terms of D, S and A.

Performance Bounds

Corollary (Sample Complexity Bound)

Given a switching-MDP problem with I changes, the average per-step regret of SW-Ucrl using W^{*} is at most ϵ with probability at least $1-\delta$ after any T steps with

$$
T \geq 2 \cdot(38.94)^{3} \cdot \frac{I D^{2} S^{2} A}{\epsilon^{3}} \log \left(\frac{(38.94)^{3} I D^{2} S^{2} A}{\epsilon^{3} \delta}\right)
$$

Experiments

Experiments

(a) Average regret plot for 2 changes

Figure 1: Average regret plots for switching-MDPs

- Switching-MDPs with $S=5, A=3$, and $T=100000$.
- I changes happen at every $\left\lceil\frac{T}{T}\right\rceil$ time steps.
- SW-Ucrl with optimum window size W^{*}
- For comparison: Ucrl2 with restarts (Ucrl2-R) and Ucrl2 with restarts after every W^{*} time steps (UcrL2-RW)

Summary and Future Directions

Summary and Future Directions

- SW-Ucrl: a competent solution for regret-minimization on switching-MDPS.
- Variation-dependent regret bound?
- Link between allowable variation in rewards and transition probabilities and minimal achievable regret? (like Besbes et al. [2014] for bandits)
- Refine episode-stopping criterion?

Thank you all.

References i

References

Yasin Abbasi, Peter L Bartlett, Varun Kanade, Yevgeny Seldin, and Csaba Szepesvari. Online learning in Markov decision processes with adversarially chosen transition probability distributions. In Advances in Neural Information Processing Systems 26, pages 2508-2516. Curran Associates, Inc., 2013.

Peter L. Bartlett and Ambuj Tewari. Regal: A regularization based algorithm for reinforcement learning in weakly communicating mdps. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI '09, pages 35-42, Arlington, Virginia, United States, 2009. AUAI Press. ISBN 978-0-9749039-5-8.

References if

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit problem with non-stationary rewards. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 199-207. Curran Associates, Inc., 2014.

Apostolos N. Burnetas and Michael N. Katehakis. Optimal adaptive policies for markov decision processes. Math. Oper. Res., 22(1): 222-255, February 1997. ISSN 0364-765X.

Eyal Even-dar, Sham M Kakade, and Yishay Mansour. Experts in a Markov decision process. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 401-408. MIT Press, 2005.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. J. Mach. Learn. Res., 11: 1563-1600, August 2010.

References iii

Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision processes with uncertain transition matrices. Oper. Res., 53(5): 780-798, September 2005.

Huan Xu and Shie Mannor. The robustness-performance tradeoff in Markov decision processes. In NIPS, pages 1537-1544. MIT Press, 2006.

Jia Yuan Yu and Shie Mannor. Arbitrarily modulated Markov decision processes. In Proceedings of the IEEE Conference on Decision and Control, pages 2946-2953, 12 2009a.

Jia Yuan Yu and Shie Mannor. Online learning in Markov decision processes with arbitrarily changing rewards and transitions. In 2009 International Conference on Game Theory for Networks, pages 314-322, May 2009b.

SW-UCRL: Policy computation

1. Let \mathcal{M}_{k} be the set of all MDPs with state space \mathcal{S} and action space \mathcal{A}, and with transition probabilities $\tilde{p}(\cdot \mid s, a)$ close to $\hat{p}_{k}(\cdot \mid s, a)$, and rewards $\tilde{r}(s, a) \in[0,1]$ close to $\hat{r}_{k}(s, a)$, that is,

$$
\begin{align*}
\left|\tilde{r}(s, a)-\hat{r}_{k}(s, a)\right| & \leq \sqrt{\frac{7 \log \left(2 S A t_{k} / \delta\right)}{2 \max \left\{1, N_{k}(s, a)\right\}}} \quad \text { and } \tag{3}\\
\left\|\tilde{p}(\cdot \mid s, a)-\hat{p}_{k}(\cdot \mid s, a)\right\|_{1} & \leq \sqrt{\frac{14 S \log \left(2 A t_{k} / \delta\right)}{\max \left\{1, N_{k}(s, a)\right\}}} \tag{4}
\end{align*}
$$

2. Use extended value iteration to find a policy near optimal policy $\tilde{\pi}_{k}$ and an optimistic MDP $\tilde{M}_{k} \in \mathcal{M}_{k}$ such that

$$
\tilde{\rho}_{k}:=\min _{s} \rho\left(\tilde{M}_{k}, \tilde{\pi}_{k}, s\right) \geq \max _{M^{\prime} \in \mathcal{M}_{k}, \pi, s^{\prime}} \rho\left(M^{\prime}, \pi, s^{\prime}\right)-\frac{1}{\sqrt{t_{k}}}
$$

