Pratik Gajane

Motivation and Formalization

Lower Bound of Regret

Algorithms and Analyses

Experiments

Final remarks

References

Corrupt Bandits

Pratik Gajane

INRIA SequeL, Université Lille 3 & Orange labs

Jan 15, 2017

Joint work with Tanguy Urvoy and Emilie Kaufmann

1

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

A. Motivation and Formalization

B. Lower Bound on Regret

C. Algorithms and Analyses

D. Experiments

E. Final remarks

Pratik Gajane

Motivation and Formalization

Lower Bound on Regret

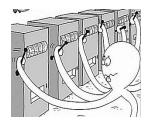
Algorithms and Analyses

Experiments

Final remarks

References

Classical Stochastic Bandits



- K arms/actions
- Unknown reward distributions with mean $\mu_{\rm a}$ for arm a
- Learner pulls arm a
 - receives reward ~ distribution for a
 - feedback = received reward (Absolute feedback)
- Regret = best possible reward reward of pulled arm
- Learner's goal = minimize cumulative regret

Pratik Gajane

Motivation and Formalization

Lower Bound on Regret

Algorithms and Analyses

Experiments

Final remarks

References

Motivation for Corrupt Bandits: Privacy

Pratik Gajane

Motivation and Formalization

Lower Bound on Regret

Algorithms and Analyses

Experiments

Final remarks

References

Motivation for Corrupt Bandits: Privacy

"If you're doing something that you don't want other people to know, maybe you shouldn't be doing it in first place"

"Privacy is no longer a social norm!"

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Local Differential Privacy

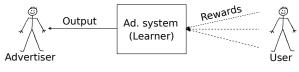


Figure 1: Ad system using bandits

- Ad application as bandit problem.
- Feedback from users on ads (arms).
- Information about user tastes as output to advertisers.

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Local Differential Privacy

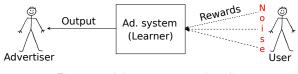


Figure 1: Ad system using bandits

- Ad application as bandit problem.
- Feedback from users on ads (arms).
- Information about user tastes as output to advertisers.
- Local differential privacy (DP), by Duchi et al.(2014) [3].
- Classical bandits unable to deal with noisy feedback.

Pratik Gajane

Motivation and Formalization

Lower Bound on Regret

- Algorithms and Analyses
- Experiments
- Final remarks
- References

Questions???

- Bandit setting to deal with Corrupted/Noisy Feedback?
- Regret Lower Bound for such Bandit setting?
- Algorithms to solve this Bandit setting?

Pratik Gajane

Motivation and Formalization

Lower Bound on Regret

Algorithms and Analyses

Experiments

Final remarks

References

Corrupt Bandits: Formalization

- Formally characterized by
 - ► K arms
 - unknown reward distribution with mean μ_a for each a
 - unknown feedback distribution with mean λ_a for each a
 - known mean corruption function g_a for each a
- $g_a(\mu_a) = \lambda_a$
- Learner's goal: minimize cumulative regret

Pratik Gajane

Motivation and Formalization

Lower Bound on Regret

Algorithms and Analyses

Experiments

Final remarks

References

Lower Bound

Theorem (Thm. 1, PG, Urvoy & Kaufmann(2016) [1]) Any algorithm for a Bernoulli corrupt bandit problem satisfies,

$$\liminf_{T \to \infty} \frac{\mathsf{Regret}_{\mathcal{T}}}{\mathsf{log}(\mathcal{T})} \geq \sum_{\mathsf{a}=2}^{K} \frac{\Delta_{\mathsf{a}}}{d\left(\lambda_{\mathsf{a}}, g_{\mathsf{a}}(\mu_{1})\right)}$$

$$d(x,y) := \operatorname{KL}(\mathcal{B}(x), \mathcal{B}(y)) = x \cdot \log\left(\frac{x}{y}\right) + (1-x) \cdot \log\left(\frac{1-x}{1-y}\right)$$

- $\Delta_a = \text{optimal mean reward}$ mean reward of a (μ_a)
- 1 is assumed to be the optimal arm w.l.o.g.
- λ_a = g_a(μ_a). Behaviour of g_a on μ_a and μ₁ affects lower bound.

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Proposed algorithm: kl-UCB-CF

Algorithm: kl-UCB-CF

Pull at time t an arm maximizing $\text{Index}_a(t) := \max\{q : N_a(t) \cdot d(\hat{\lambda}_a(t), g_a(q)) \le f(t)\}$

- Similar to kl-UCB by Cappé et al. (2013) [2] for classical bandits.
- Index_a(t) = UCB on μ_a from confidence interval on λ_a and using exploration function f
- $\hat{\lambda}_a(t) = \text{emp.}$ mean of feedback of a until time t
- UCB1 (Auer et al. (2002)) can be updated to UCB-CF.

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Upper bound for $\mathrm{kl}\text{-}\mathrm{UCB}\text{-}\mathrm{CF}$

Theorem (Thm. 2, PG, Urvoy & Kaufmann(2016) [1]) Regret of kl-UCB-CF $\leq \sum_{a=2}^{K} \frac{\Delta_a \log(T)}{d(\lambda_a, g_a(\mu_1))} + O(\sqrt{\log(T)}).$

- Recall that 1 is assumed to be the optimal arm.
- More explicit bound can be provided.
- Optimal as upper bound matches lower bound.

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Proof outline for $\operatorname{kl-UCB-CF}$ regret

$$\begin{aligned} & \text{Index}_{a}(t) \coloneqq \max \left\{ q: \ N_{a}(t) \cdot d(\hat{\lambda}_{a}(t), g_{a}(q)) \leq f(t) \right\} \\ & \text{or} & \text{on } g_{a}(\mu_{a}) \text{ if } g_{a} \text{ is decreasing} \\ & \text{Upper bound } u_{a}(t) \text{ on } g_{a}(\mu_{a}) \text{ if } g_{a} \text{ is increasing} \end{aligned}$$

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

$$\begin{aligned} & \text{Index}_{a}(t) \coloneqq \max \left\{ q: \ N_{a}(t) \cdot d(\hat{\lambda}_{a}(t), g_{a}(q)) \leq f(t) \right\} \\ & \text{or} & \text{on } g_{a}(\mu_{a}) \text{ if } g_{a} \text{ is decreasing} \\ & \text{Upper bound } u_{a}(t) \text{ on } g_{a}(\mu_{a}) \text{ if } g_{a} \text{ is increasing} \end{aligned}$$

- a is pulled at time t + 1 by kl-UCB-CF \Longrightarrow
 - $g_1(\mu_1) < \ell_1(t)$ or $g_1(\mu_1) > u_1(t)$. Unlikely event.
 - $g_1(\mu_1)$ is inside its confidence interval. Likely event.

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

$$\begin{array}{ll} \operatorname{Index}_{a}(t) \coloneqq \max \left\{ q: \ N_{a}(t) \cdot d(\hat{\lambda}_{a}(t), g_{a}(q)) \leq f(t) \right\} \\ \text{or} & \text{on } g_{a}(\mu_{a}) \text{ if } g_{a} \text{ is decreasing} \\ \text{Upper bound } u_{a}(t) \text{ on } g_{a}(\mu_{a}) \text{ if } g_{a} \text{ is increasing} \end{array}$$

- a is pulled at time t + 1 by kl-UCB-CF \Longrightarrow
 - $g_1(\mu_1) < \ell_1(t)$ or $g_1(\mu_1) > u_1(t)$. Unlikely event.
 - $g_1(\mu_1)$ is inside its confidence interval. Likely event.
- Probability of **unlikely event** = $o(\log T)$.

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

$$\begin{array}{ll} \operatorname{Index}_{a}(t) \coloneqq \max \left\{ q: \ N_{a}(t) \cdot d(\hat{\lambda}_{a}(t), g_{a}(q)) \leq f(t) \right\} \\ \text{or} & \text{on } g_{a}(\mu_{a}) \text{ if } g_{a} \text{ is decreasing} \\ \text{Upper bound } u_{a}(t) \text{ on } g_{a}(\mu_{a}) \text{ if } g_{a} \text{ is increasing} \end{array}$$

- a is pulled at time t + 1 by kl-UCB-CF \Longrightarrow
 - $g_1(\mu_1) < \ell_1(t)$ or $g_1(\mu_1) > u_1(t)$. Unlikely event.
 - $g_1(\mu_1)$ is inside its confidence interval. Likely event.
- Probability of **unlikely event** = $o(\log T)$.
- Probability of **likely event** = $\frac{\log T}{d(\lambda_a, g_a(\mu_1))} + \cdots$

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

$$\begin{array}{ll} \operatorname{Index}_{a}(t) \coloneqq \max \left\{ q: \ N_{a}(t) \cdot d(\hat{\lambda}_{a}(t), g_{a}(q)) \leq f(t) \right\} \\ \text{or} & \text{on } g_{a}(\mu_{a}) \text{ if } g_{a} \text{ is decreasing} \\ \text{Upper bound } u_{a}(t) \text{ on } g_{a}(\mu_{a}) \text{ if } g_{a} \text{ is increasing} \end{array}$$

- a is pulled at time t + 1 by kl-UCB-CF \Longrightarrow
 - $g_1(\mu_1) < \ell_1(t)$ or $g_1(\mu_1) > u_1(t)$. Unlikely event.
 - $g_1(\mu_1)$ is inside its confidence interval. Likely event.
- Probability of **unlikely event** = $o(\log T)$.
- Probability of **likely event** = $\frac{\log T}{d(\lambda_a, g_a(\mu_1))} + \cdots$
- Above leads to upper bound on $\mathbb{E}[N_a(T)]$ and Regret_{*T*} = $\sum_{a=2}^{K} \Delta_a \cdot \mathbb{E}[N_a(T)]$.

Pratik Gajane

Motivation and Formalization

Lower Bound of Regret

Algorithms and Analyses

Experiments

Final remarks

References

Proposed algorithm: TS-CF

Algorithm: TS-CF

1. Sample $\theta_a(t)$ from Beta posterior distribution on mean feedback of arm a.

2. Pull arm
$$\hat{a}_{t+1} = rg\max_{a} g_a^{-1}(heta_a(t)).$$

- Similar to Thompson sampling by Thompson (1933) [5] for classical bandits.
- Probability (a is played) = posterior probability (a is optimal).

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Upper bound for $\operatorname{TS-CF}$

Theorem

Regret of TS-CF $\leq \sum_{a=2}^{K} \frac{2\Delta_a \log(T)}{d(\lambda_a, g_a(\mu_1))} + O(\sqrt{\log(T)})$

- Recall that 1 is assumed the be the optimal arm.
- A tighter bound can be provided.
- Optimal as upper bound matches lower bound.

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Proof outline for $\operatorname{TS-CF}$ regret

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Proof outline for $\operatorname{TS-CF}$ regret

• Event
$$E_a^{\lambda}(t) = \{g_a^{-1}(\hat{\lambda}_a(t)) \le g_a^{-1}(u_a)\}$$

Event $E_a^{\theta}(t) = \{g_a^{-1}(\theta_a(t)) \le g_a^{-1}(w_a)\}$

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Proof outline for $\operatorname{TS-CF}$ regret

• Event
$$E_a^{\lambda}(t) = \{g_a^{-1}(\hat{\lambda}_a(t)) \le g_a^{-1}(u_a)\}$$

Event $E_a^{\theta}(t) = \{g_a^{-1}(\theta_a(t)) \le g_a^{-1}(w_a)\}$

•
$$\mathbb{E}[N_a(T)] \leq \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, E_a^{\lambda}(t), \overline{E_a^{\theta}(t)}) + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, E_a^{\lambda}(t), E_a^{\theta}(t)) + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \overline{E_a^{\lambda}(t)}).$$

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Proof outline for $\operatorname{TS-CF}$ regret

• Two thresholds u_a and w_a $\lambda_a < u_a < w_a < g_a(\mu_1)$ if g_a is increasing and, $\lambda_a > u_a > w_a > g_a(\mu_1)$ if g_a is decreasing.

• Event
$$E_a^{\lambda}(t) = \{g_a^{-1}(\hat{\lambda}_a(t)) \le g_a^{-1}(u_a)\}$$

Event $E_a^{\theta}(t) = \{g_a^{-1}(\theta_a(t)) \le g_a^{-1}(w_a)\}$

•
$$\mathbb{E}[N_a(T)] \leq \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, E_a^{\lambda}(t), \overline{E_a^{\theta}(t)}) + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, E_a^{\lambda}(t), E_a^{\theta}(t)) + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \overline{E_a^{\lambda}(t)}).$$

• Last two terms are $o(\log(T))$.

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Proof outline for $\operatorname{TS-CF}$ regret

• Two thresholds u_a and w_a $\lambda_a < u_a < w_a < g_a(\mu_1)$ if g_a is increasing and, $\lambda_a > u_a > w_a > g_a(\mu_1)$ if g_a is decreasing.

• Event
$$E_a^{\lambda}(t) = \{g_a^{-1}(\hat{\lambda}_a(t)) \le g_a^{-1}(u_a)\}$$

Event $E_a^{\theta}(t) = \{g_a^{-1}(\theta_a(t)) \le g_a^{-1}(w_a)\}$

•
$$\mathbb{E}[N_a(T)] \leq \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, E_a^{\lambda}(t), \overline{E_a^{\theta}(t)}) + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, E_a^{\lambda}(t), E_a^{\theta}(t)) + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, E_a^{\lambda}(t)).$$

• Last two terms are $o(\log(T))$.

• First term is $\leq \frac{\log(T)}{d(u'_a, w_a)} + 1$ for large T and suitable u'_a .

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Proof outline for $\operatorname{TS-CF}$ regret

• Event
$$E_a^{\lambda}(t) = \{g_a^{-1}(\hat{\lambda}_a(t)) \le g_a^{-1}(u_a)\}$$

Event $E_a^{\theta}(t) = \{g_a^{-1}(\theta_a(t)) \le g_a^{-1}(w_a)\}$

•
$$\mathbb{E}[N_a(T)] \leq \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, E_a^{\lambda}(t), \overline{E_a^{\theta}(t)}) + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \frac{E_a^{\lambda}(t)}{t}, \frac{E_a^{\theta}(t)}{t}) + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \overline{E_a^{\lambda}(t)}).$$

- Last two terms are $o(\log(T))$.
- First term is $\leq \frac{\log(T)}{d(u'_a, w_a)} + 1$ for large T and suitable u'_a .
- Binding above leads to upper bound on $\mathbb{E}[N_a(T)]$ and Regret_T = $\sum_{a=2}^{K} \Delta_a \cdot \mathbb{E}[N_a(T)]$.

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Experiments with varying time

- Bernoulli corrupt bandit: $\mu_1 = 0.9$ $\mu_2 = \cdots = \mu_{10} = 0.6$
- Comparison over a period of time for fixed corruption

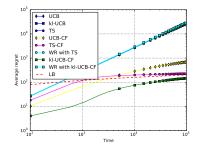


Figure 2: Regret plots with varying T up to 10^5

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Experiments with varying Local DP

- Bernoulli corrupt bandit: $\mu_1 = 0.9$ $\mu_2 = \cdots = \mu_{10} = 0.6$
- Comparison with varying level of Local DP; ϵ from $\{1/8, 1/4, 1/2, 1, 2, 4, 8\}$

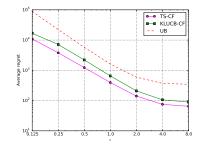


Figure 3: Regret with varying level of Local DP

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Final Remarks

Covered in this talk:

- Introduced Corrupt Bandits to provide privacy.
- Proved the lower bound. Provided optimal algorithms matching the lower bound.

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Final Remarks

Covered in this talk:

- Introduced Corrupt Bandits to provide privacy.
- Proved the lower bound. Provided optimal algorithms matching the lower bound.

Not covered in this talk:

• Provided optimal mechanism for achieving local DP.

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Final Remarks

Covered in this talk:

- Introduced Corrupt Bandits to provide privacy.
- Proved the lower bound. Provided optimal algorithms matching the lower bound.

Not covered in this talk:

- Provided optimal mechanism for achieving local DP.
- Proved regret guarantees for achieving required level of local DP (Trade-off between utility and privacy).

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Final Remarks

Covered in this talk:

- Introduced Corrupt Bandits to provide privacy.
- Proved the lower bound. Provided optimal algorithms matching the lower bound.

Not covered in this talk:

- Provided optimal mechanism for achieving local DP.
- Proved regret guarantees for achieving required level of local DP (Trade-off between utility and privacy).
- Provided lower bound on sample complexity for best arm identification and two corresponding algorithms.

Pratik Gajane

Motivation and Formalization

Lower Bound on Regret

Algorithms and Analyses

Experiments

Final remarks

References

Final Remarks

Covered in this talk:

- Introduced Corrupt Bandits to provide privacy.
- Proved the lower bound. Provided optimal algorithms matching the lower bound.

Not covered in this talk:

- Provided optimal mechanism for achieving local DP.
- Proved regret guarantees for achieving required level of local DP (Trade-off between utility and privacy).
- Provided lower bound on sample complexity for best arm identification and two corresponding algorithms.

Future work:

- Contextual corruption?
- Corrupted feedback in RL? (a very recent arXiv article by Everitt et al. (2017) [4]).

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

Thank you all.

Pratik Gajane

Motivation and Formalization

Lower Bound or Regret

Algorithms and Analyses

Experiments

Final remarks

References

References I

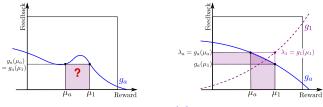
- [1] Corrupt bandits. *The European Workshop in Reinforcement Learning (EWRL)*, 2016.
- [2] O. Cappé, A. Garivier, O-A. Maillard, R. Munos, and G. Stoltz. Kullback-Leibler upper confidence bounds for optimal sequential allocation. *Annals of Statistics*, 41(3):1516–1541, 2013.
- [3] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Privacy aware learning. J. ACM, 61(6):38:1–38:57, December 2014.
- [4] Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, and Shane Legg. Reinforcement learning with a corrupted reward channel. CoRR, abs/1705.08417, 2017.
- [5] W.R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Bulletin of the AMS*, 25:285–294, 1933.

C		D	- 12	
Corru	pτ	ваі	nai	τs

Pratik Gajane

Interpretation of Lower bound for corrupt bandits

• Divergence between λ_a and $g_a(\mu_1)$ plays a crucial role in distinguishing arm *a* from the optimal arm.



(a) Uninformative g_a function. (b) Informative g_a function.

Figure 4: On the left, g_a is such that $\lambda_a = g_a(\mu_1)$. On the right, a steep monotonic g_a leads $\Delta_a = \mu_1 - \mu_a$ into a clear gap between λ_a and $g_a(\mu_1)$.

- If the g_a function is non-monotonic, it might be impossible to distinguish between arm a and the optimal arm.
- Assumption: Corruption functions strictly monotonic.