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Classical Stochastic Bandits

• K arms/actions

• Unknown reward distributions
with mean µa for arm a

• Learner pulls arm a
I receives reward ∼ distribution

for a

I feedback = received reward
(Absolute feedback)

• Regret = best possible reward - reward of pulled arm

• Learner’s goal = minimize cumulative regret
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Motivation for Corrupt Bandits: Privacy
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Figure 1: Ad system using bandits

• Ad application as bandit problem.

• Feedback from users on ads (arms).

• Information about user tastes as output to advertisers.

• Local differential privacy (DP), by Duchi et al.(2014) [3].

• Classical bandits unable to deal with noisy feedback.
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Questions???

• Bandit setting to deal with Corrupted/Noisy Feedback?

• Regret Lower Bound for such Bandit setting?

• Algorithms to solve this Bandit setting?
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Corrupt Bandits: Formalization

• Formally characterized by
I K arms
I unknown reward distribution with mean µa for each a
I unknown feedback distribution with mean λa for each a
I known mean corruption function ga for each a

• ga(µa) = λa

• Learner’s goal: minimize cumulative regret
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Lower Bound

Theorem (Thm. 1, PG, Urvoy & Kaufmann(2016) [1])

Any algorithm for a Bernoulli corrupt bandit problem
satisfies,

lim inf
T→∞

RegretT
log(T )

≥
K∑

a=2

∆a

d (λa, ga(µ1))
.

d(x , y) := KL(B(x),B(y)) = x ·log

(
x

y

)
+(1−x)·log

(
1− x

1− y

)
• ∆a = optimal mean reward - mean reward of a (µa)

• 1 is assumed to be the optimal arm w.l.o.g.

• λa = ga(µa). Behaviour of ga on µa and µ1 affects lower
bound.
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Proposed algorithm: kl-UCB-CF

Algorithm: kl-UCB-CF

Pull at time t an arm maximizing
Indexa(t) := max{q : Na(t) · d(λ̂a(t), ga(q)) ≤ f (t)}

• Similar to kl-UCB by Cappé et al. (2013) [2] for classical
bandits.

• Indexa(t) = UCB on µa from confidence interval on λa
and using exploration function f

• λ̂a(t) = emp. mean of feedback of a until time t

• UCB1 (Auer et al. (2002)) can be updated to UCB-CF.
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Upper bound for kl-UCB-CF

Theorem (Thm. 2, PG, Urvoy & Kaufmann(2016) [1])

Regret of kl-UCB-CF ≤
∑K

a=2
∆a log(T )

d(λa,ga(µ1)) + O(
√

log(T )).

• Recall that 1 is assumed to be the optimal arm.

• More explicit bound can be provided.

• Optimal as upper bound matches lower bound.
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Proof outline for kl-UCB-CF regret

• Indexa(t) := max
{
q : Na(t) · d(λ̂a(t), ga(q)) ≤ f (t)

}
or Lower bound `a(t) on ga(µa) if ga is decreasing

Upper bound ua(t) on ga(µa) if ga is increasing

• a is pulled at time t + 1 by kl-UCB-CF =⇒
I g1(µ1) < `1(t) or g1(µ1) > u1(t). Unlikely event.
I g1(µ1) is inside its confidence interval. Likely event.

• Probability of unlikely event = o(logT ).

• Probability of likely event = log T
d(λa,ga(µ1)) + · · ·

• Above leads to upper bound on E[Na(T )] and
RegretT =

∑K
a=2 ∆a · E[Na(T )].
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Proposed algorithm: TS-CF

Algorithm: TS-CF

1. Sample θa(t) from Beta posterior distribution on mean
feedback of arm a.
2. Pull arm ât+1 = arg max

a
g−1
a (θa(t)).

• Similar to Thompson sampling by Thompson (1933) [5]
for classical bandits.

• Probability (a is played) = posterior probability (a is op-
timal).
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Upper bound for TS-CF

Theorem

Regret of TS-CF ≤
∑K

a=2
2∆a log(T )
d(λa,ga(µ1)) + O(

√
log(T ))

• Recall that 1 is assumed the be the optimal arm.

• A tighter bound can be provided.

• Optimal as upper bound matches lower bound.
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Proof outline for TS-CF regret

• Two thresholds ua and wa

λa < ua < wa < ga(µ1) if ga is increasing and,
λa > ua > wa > ga(µ1) if ga is decreasing.

• Event Eλa (t) = {g−1
a (λ̂a(t)) ≤ g−1

a (ua)}
Event E θa (t) = {g−1

a (θa(t)) ≤ g−1
a (wa)}

• E[Na(T )] ≤
∑T−1

t=0 P(ât+1 = a,Eλa (t),E θa (t))

+
∑T−1

t=0 P(ât+1 = a,Eλa (t),E θa (t))

+
∑T−1

t=0 P(ât+1 = a,Eλa (t)).

• Last two terms are o(log(T )).

• First term is ≤ log(T )
d(u′a,wa) + 1 for large T and suitable u′a.

• Binding above leads to upper bound on E[Na(T )] and
RegretT =

∑K
a=2 ∆a · E[Na(T )].
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Experiments with varying time

• Bernoulli corrupt bandit: µ1 = 0.9 µ2 = · · · = µ10 =
0.6

• Comparison over a period of time for fixed corruption
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Figure 2: Regret plots with varying T up to 105

15



Corrupt Bandits

Pratik Gajane

Motivation and
Formalization

Lower Bound on
Regret

Algorithms and
Analyses

Experiments

Final remarks

References

Experiments with varying Local DP

• Bernoulli corrupt bandit: µ1 = 0.9 µ2 = · · · = µ10 =
0.6

• Comparison with varying level of Local DP; ε from
{1/8, 1/4, 1/2, 1, 2, 4, 8}
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Figure 3: Regret with varying level of Local DP
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Final Remarks

Covered in this talk:

• Introduced Corrupt Bandits to provide privacy.

• Proved the lower bound. Provided optimal algorithms
matching the lower bound.
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Final Remarks

Covered in this talk:

• Introduced Corrupt Bandits to provide privacy.

• Proved the lower bound. Provided optimal algorithms
matching the lower bound.

Not covered in this talk:

• Provided optimal mechanism for achieving local DP.

• Proved regret guarantees for achieving required level of
local DP (Trade-off between utility and privacy).

• Provided lower bound on sample complexity for best arm
identification and two corresponding algorithms.
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Final Remarks

Covered in this talk:

• Introduced Corrupt Bandits to provide privacy.

• Proved the lower bound. Provided optimal algorithms
matching the lower bound.

Not covered in this talk:

• Provided optimal mechanism for achieving local DP.

• Proved regret guarantees for achieving required level of
local DP (Trade-off between utility and privacy).

• Provided lower bound on sample complexity for best arm
identification and two corresponding algorithms.

Future work:

• Contextual corruption?

• Corrupted feedback in RL? (a very recent arXiv article by
Everitt et al. (2017) [4]).

17



Corrupt Bandits

Pratik Gajane

Motivation and
Formalization

Lower Bound on
Regret

Algorithms and
Analyses

Experiments

Final remarks

References

Thank you all.
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Interpretation of Lower bound for corrupt
bandits

• Divergence between λa and ga(µ1) plays a crucial role in
distinguishing arm a from the optimal arm.

(a) Uninformative ga function. (b) Informative ga function.

Figure 4: On the left, ga is such that λa = ga(µ1). On the right, a
steep monotonic ga leads ∆a = µ1 − µa into a clear gap between
λa and ga(µ1).

• If the ga function is non-monotonic, it might be impos-
sible to distinguish between arm a and the optimal arm.
• Assumption: Corruption functions strictly monotonic.
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