Multi-Armed Bandits with Relative Feedback

Pratik Gajane

Orange labs \& INRIA SequeL
$1^{\text {st }}$ November 2016

Outline

1. Dueling bandits
2. Analysis of the algorithm
3. Experiments

Motivation for the dueling bandit problem

- In many practical situations, relative feedback is available, and not absolute feedback.
- Eg: "I like Tennis more than Basketball" instead of "I value tennis at 48/50 and Basketball at 33/50".

- Information retrieval systems where users provide implicit feedback about the provided results.
- Interleaved filtering, proposed by Radlinski et al. [3], interleaves the rankings to remove the bias.
- Inability of classical MAB to deal with relative feedback motivates new problem setting.

The dueling bandit problem

- A variation of the classical Multi-Armed Bandit (MAB) to deal with relative feedback.
- At each time period, the learner selects two arms.
- The learner only sees the outcome of the duel between the selected arms.
- The learner receives a function of the rewards of the selected
 arms.

Formulating the duelings bandits

- Matrix-based formulation
- preference matrix contains $\mathbb{P}_{a, b}=$ unknown probability with which a wins the duel arewardst b.
1
2
\vdots
$K$$\left[\begin{array}{cccc}1 & 2 & \cdots & K \\ 1 / 2 & \mathbb{P}_{1,2} & & \mathbb{P}_{1, K} \\ \mathbb{P}_{2,1} & 1 / 2 & & \mathbb{P}_{2, K} \\ & & \ddots & \\ \mathbb{P}_{K, 1} & \mathbb{P}_{K, 2} & & 1 / 2\end{array}\right]$
- Utility-based formulation
- At each time t, a utility $x_{a}(t)$ is associated with each arm a.
- When arms a and b are selected,
$x_{a}(t)>x_{b}(t): a$ wins the duel
$x_{a}(t)<x_{b}(t): b$ wins the duel
$x_{a}(t)=x_{b}(t):\left\{\begin{array}{l}a \text { wins the duel with probability } 0.5 \\ b \text { wins the duel with probability } 0.5\end{array}\right.$

Utility-based adversarial dueling bandits

- State of the art dueling bandits algorithms are for stochastic bandits. \rightarrow arm rewards are independent and identically distributed (iid).
- Adversarial dueling bandits allow us to drop these assumptions.
- In our setting, the adversary chooses a sequence of utility vectors $\mathbf{x}(t)=\left(x_{1}(t), \ldots, x_{K}(t)\right) \in[0,1]^{K}$ for $t=1, \ldots, T$.
- At each time t, the learner chooses two arms a and b, Instantaneous reward $=\frac{x_{a}(t)+x_{b}(t)}{2}$
(hidden)

Feedback

$$
=x_{a}(t)-x_{b}(t)
$$

Utility-based adversarial dueling bandits

- State of the art dueling bandits algorithms are for stochastic bandits. \rightarrow arm rewards are independent and identically distributed (iid).
- Adversarial dueling bandits allow us to drop these assumptions.
- In our setting, the adversary chooses a sequence of utility vectors $\mathbf{x}(t)=\left(x_{1}(t), \ldots, x_{K}(t)\right) \in\{0,1\}^{K}$ for $t=1, \ldots, T$.
- At each time t, the learner chooses two arms a and b, Instantaneous reward $=\frac{x_{a}(t)+x_{b}(t)}{2} \quad$ (hidden)

$$
\text { Feedback (binary rewards) }= \begin{cases}-1 & \text { if } x_{a}(t)<x_{b}(t) \\ 0 & \text { if } x_{a}(t)=x_{b}(t) \\ +1 & \text { if } x_{a}(t)>x_{b}(t)\end{cases}
$$

Lower bound for any dueling bandit algorithm

Theorem

For $K \geq 2$ and $T \geq K$, there exists a distribution over assignments of rewards such that the expected cumulative regret of any utility-based dueling bandit algorithm cannot be less than $\Omega(\sqrt{K T})$.
$\mathbb{G}_{\text {max }}$ - Maximum possible reward for a single-arm strategy
$\mathbb{E}\left(\mathbb{G}_{\text {alg }}\right)$ - Expected reward earned by the algorithm's strategy $\mathbb{G}_{\max }-\mathbb{E}\left(\mathbb{G}_{\text {alg }}\right)$ - Expected cumulative regret

- We proved this by reduction to classical bandits as suggested in Ailon et al. [1]
- Lower bound for adversarial dueling bandits $=$ lower bound of classical adversarial bandits $=\Omega(\sqrt{K T})$
- Data dependent lower bound for stochastic bandits $=$ $\Omega(K \log (T) / \Delta)$

Relative Exponential Weighing Algorithm (REX3)

- Non-trivial extension of Exp3 [2] to the dueling bandits with binary rewards.
- Assigns a weight to each arm. Higher weight \Longrightarrow higher selection probability.
- $d=x_{a}-x_{b}=$

$$
\begin{cases}-1 & \text { if } x_{a}<x_{b} \\ 0 & \text { if } x_{a}=x_{b} \\ +1 & \text { if } x_{a}>x_{b}\end{cases}
$$

- For anytime version, a kind of "doubling trick" (Seldin et al. [4]).

1: Parameters: Real $\gamma \in(0,0.5)$
2: Initialization: $w_{i}(1)=1$ for $i=1, \ldots, K$.
3: for $t=1,2, \ldots$ do
4: \quad for $i=1, \ldots, K$ do
5: $\quad p_{i}(t) \leftarrow$

$$
(1-\gamma) \frac{w_{i}(t)}{\sum_{j=1}^{k_{j}} w_{j}(t)}+\frac{\gamma}{K}
$$

6: end for
7: Pull

$$
a, b \sim\left(p_{1}(t), \ldots, p_{K}(t)\right) .
$$

8: Get relative feedback $d \in\{-1,0,+1\}$
9: if $a \neq b$ then

11:

$$
\begin{align*}
& w_{a}(t+1) \leftarrow w_{a}(t) \cdot e^{\frac{\gamma}{\kappa} \frac{d}{2 p_{a}}} \\
& w_{b}(t+1) \leftarrow w_{b}(t) \cdot e^{-\frac{\gamma}{\kappa} \frac{d}{2 p_{b}}}
\end{align*}
$$

12: end if
13: Update γ (for anytime

Relative Exponential Weighing Algorithm (REX3)

Weights at $t=0$

$$
(\gamma=0.4)
$$

1: Parameters: Real $\gamma \in(0,0.5)$
2: Initialization: $w_{i}(1)=1$ for $i=1, \ldots, K$.
3: for $t=1,2, \ldots$ do
4: \quad for $i=1, \ldots, K$ do
5: $\quad p_{i}(t) \leftarrow$

$$
(1-\gamma) \frac{w_{i}(t)}{\sum_{j=1}^{K} w_{j}(t)}+\frac{\gamma}{K}
$$

6: end for
7: Pull $a, b \sim\left(p_{1}(t), \ldots, p_{K}(t)\right)$.
8: Get relative feedback $d \in\{-1,0,+1\}$
9: if $a \neq b$ then

11:

$$
\begin{aligned}
& w_{a}(t+1) \leftarrow w_{a}(t) \cdot e^{\frac{\gamma}{K} \frac{d}{2 p_{a}}} \\
& w_{b}(t+1) \leftarrow w_{b}(t) \cdot e^{-\frac{\gamma}{K} \frac{d}{2 p_{b}}}
\end{aligned}
$$

- Update weight according

12: end if
13: Update γ (for anytime

Relative Exponential Weighing Algorithm (REX3)

$$
\begin{gathered}
a=1, b=2, x_{a}>x_{b} \\
\text { Weights at } t=1
\end{gathered}
$$

- Weight may decrease unlike EXP3.

1: Parameters: Real $\gamma \in(0,0.5)$
2: Initialization: $w_{i}(1)=1$ for $i=1, \ldots, K$.
3: for $t=1,2, \ldots$ do
4: \quad for $i=1, \ldots, K$ do
5: $\quad p_{i}(t) \leftarrow$

$$
(1-\gamma) \frac{w_{i}(t)}{\sum_{j=1}^{K} w_{j}(t)}+\frac{\gamma}{K}
$$

6: end for
7: Pull $a, b \sim\left(p_{1}(t), \ldots, p_{K}(t)\right)$.
8: Get relative feedback $d \in\{-1,0,+1\}$
9: if $a \neq b$ then

11:

$$
\begin{aligned}
& w_{a}(t+1) \leftarrow w_{a}(t) \cdot e^{\frac{\gamma}{K} \frac{d}{2 p_{a}}} \\
& w_{b}(t+1) \leftarrow w_{b}(t) \cdot e^{-\frac{\gamma}{K} \frac{d}{2 p_{b}}}
\end{aligned}
$$

12: end if
13: Update γ (for anytime

Relative Exponential Weighing Algorithm (REX3)

1: Parameters: Real $\gamma \in(0,0.5)$

$$
\begin{gathered}
a=1, b=3, x_{a}>x_{b} \\
\text { Weights at } t=2
\end{gathered}
$$

2: Initialization: $w_{i}(1)=1$ for $i=1, \ldots, K$.
3: for $t=1,2, \ldots$ do
4: \quad for $i=1, \ldots, K$ do
5: $\quad p_{i}(t) \leftarrow$

$$
(1-\gamma) \frac{w_{i}(t)}{\sum_{j=1}^{K} w_{j}(t)}+\frac{\gamma}{K}
$$

6: end for
7: Pull $a, b \sim\left(p_{1}(t), \ldots, p_{K}(t)\right)$.
8: Get relative feedback $d \in\{-1,0,+1\}$
9: if $a \neq b$ then

11:

$$
\begin{aligned}
& w_{a}(t+1) \leftarrow w_{a}(t) \cdot e^{\frac{\gamma}{K} \frac{d}{2 p_{a}}} \\
& w_{b}(t+1) \leftarrow w_{b}(t) \cdot e^{-\frac{\gamma}{K} \frac{d}{2 p_{b}}}
\end{aligned}
$$

- Weights spike at arms who win the duel regularly.

12: end if
13: Update γ (for anytime 9 version)

Upper bound for REX3

Theorem

$\mathbb{G}_{\max }-\mathbb{E}\left(\mathbb{G}_{\text {alg }}\right) \leq \frac{K}{\gamma} \ln (K)+\gamma \tau$ where

$$
\tau=e \cdot \mathbb{E} \mathbb{G}_{a l g}-(4-e) \cdot \mathbb{E} \mathbb{G}_{\text {unif }}
$$

Corollary

When $\gamma=\min \left\{\frac{1}{2}, \sqrt{\frac{K \ln (K)}{\tau}}\right\}$, the expected cumulative regret of REX3 is bounded by $\mathcal{O}(\sqrt{K \ln (K) T})$.

- Upper bound of REX3 = Upper bound of EXP3.
- Optimality:
$\operatorname{REX} 3 \sim_{\ln } \Omega(\sqrt{K T})$

Analysis of REX3

- Main challenge of dueling bandits: no direct way to estimate absolute reward values like EXP3.
- In EXP3, since we can observe absolute feedback $\left(x_{a}\right)$, the estimator $\hat{x}_{i}(t)$ is defined as follows:

$$
\hat{x}_{i}(t)=\llbracket i=a \rrbracket \frac{x_{a}(t)}{p_{a}(t)}
$$

- The division by p_{a} ensures that more "surprising" (i.e. lower p_{a}) the observed reward x_{a}, higher is the estimator.
- Ensures that their expectations are equal to the actual rewards for each action i.e.

$$
\mathbb{E}\left[\hat{x}_{i}(t)\right]=x_{i}(t)
$$

Analysis of REX3

- Feedback in dueling bandits is relative $\left(x_{a}-x_{b}\right)$ instead of absolute $\left(x_{a}\right)$, so the use of EXP3 estimator is not possible.
- To overcome this challenge, we introduced a new estimator $\hat{c}_{i}(t)$.
- We define $\hat{c}_{i}(t)$ in the following way:

$$
\hat{c}_{i}(t)=\llbracket i=a \rrbracket \frac{\left(x_{a}-x_{b}\right)}{2 p_{a}}+\llbracket i=b \rrbracket \frac{\left(x_{b}-x_{a}\right)}{2 p_{b}}
$$

- It gives us a way to provide weight update rule in a concise form:

Weight update rule earlier

$$
\begin{aligned}
& \text { 10: } w_{a}(t+1) \leftarrow w_{a}(t) \cdot e^{\frac{\gamma}{K} \frac{d}{2 p_{a}}} \\
& \text { 11: } w_{b}(t+1) \leftarrow w_{b}(t) \cdot e^{-\frac{\gamma}{K} \frac{d}{K 2 p_{b}}}
\end{aligned}
$$

Weight update rule using $\hat{c}_{i}(t) \quad \forall i w_{i}(t+1)=w_{i}(t) \cdot e^{\frac{\gamma}{\kappa} \hat{c}_{i}(t)}$

Key element of the analysis

Lemma for expectation of $\hat{c}_{i}(t)$

$$
\mathbb{E}\left[\hat{c}_{i}(t) \mid\left(a_{1}, b_{1}\right), . .,\left(a_{t-1}, b_{t-1}\right)\right]=x_{i}(t)-\mathbb{E}_{a \sim p(t)} x_{a}(t)
$$

- The expectation of this estimator is the expected instantaneous regret of the algorithm against arm i.
- i.e. the difference between the gain of arm i and the expected gain according to algorithm's current state of knowledge $p(t)$.
- This is intuitively what we want from an estimator in a dueling bandit problem.

Sketch of proof

The general structure of the proof is similar to the proof of Exp3 [2] except the difference in expectation of the $\hat{c}_{i}(t)$ estimator.
Let $W_{t}=w_{1}(t)+w_{2}(t)+\cdots+w_{K}(t)$.

$$
\begin{equation*}
\frac{W_{t+1}}{W_{t}}=\sum_{i=1}^{K} \frac{p_{i}(t)-\gamma / K}{1-\gamma} e^{(\gamma / K) \hat{c}_{i}(t)} \tag{1}
\end{equation*}
$$

As in EXP3, we simplify, take the logarithm and sum over t. We get for any j :

$$
\sum_{t=1}^{T} \frac{\gamma}{K} \hat{c}_{j}(t)-\ln (K) \leq \frac{\gamma^{2} / K}{1-\gamma} M_{1}+\frac{(e-2) \gamma^{2} / K}{1-\gamma} M_{2}
$$

Sketch of proof (continued)

By taking the expectation over the algorithm's randomization, we obtain for any j :

$$
\begin{align*}
& \sum_{t=1}^{T} \frac{\gamma}{K} \mathbb{E}_{\sim p} \hat{c}_{j}(t)-\ln (K) \leq \\
& \frac{\gamma^{2} / K}{1-\gamma} \sum_{i=t}^{T} \mathbb{E}_{\sim p} M_{1}+\frac{(e-2) \gamma^{2} / K}{1-\gamma} \sum_{i=t}^{T} \mathbb{E}_{\sim p} M_{2} \tag{2}
\end{align*}
$$

Sketch of proof (continued)

From Lemma 13, expectation of M_{1}, expectation of M_{2}, and by definition of $\mathbb{G}_{\text {max }}, \mathbb{E} \mathbb{G}_{\text {alg }}$, and $\mathbb{E} \mathbb{G}_{\text {unif }}$, the inequality (2) rewrites into:

$$
\begin{aligned}
& \mathbb{G}_{\max }-\mathbb{E} \mathbb{G}_{a l g}-\frac{K \ln K}{\gamma} \leq \frac{\gamma}{1-\gamma}\left(\mathbb{E} \mathbb{G}_{a l g}-\mathbb{E} \mathbb{G}_{u n i f}\right) \\
& +\frac{(e-2) \gamma}{2(1-\gamma)}\left(\mathbb{E} \mathbb{G}_{\text {alg }}+\mathbb{E} \mathbb{G}_{u n i f}\right)
\end{aligned}
$$

Assuming $\gamma \leq \frac{1}{2}$ we finally obtain:

$$
\mathbb{G}_{\max }-\mathbb{E} \mathbb{G}_{a l g} \leq \frac{K \ln K}{\gamma}+\gamma\left(e \mathbb{E} \mathbb{G}_{a l g}-(4-e) \mathbb{E}_{\mathbb{G}_{u n i f}}\right)
$$

Experiments

- We used interleaved filtering on real datasets from information retrieval systems.
- We considered the following state of the art algorithms: BTM [6] (explore-then-exploit setting), sAVAGE [5], RUCB [7], and Sparring coupled with Exp3 [1] and Random as baseline.
- The experiments showed that REX3 and especially its anytime version are competitive solutions for the dueling bandit problem.

Experiments

Figure 1: Average regret and accuracy plots on ARXIV dataset (6 rankers). Time and regret scales are logarithmic.

Experiments

Figure 2: On the left: average regret and accuracy plots on MSLR30K with navigational queries ($K=136$ rankers). On the right: same dataset, fixed $T=10^{5}$ and $K=4-136$. Colored areas show minimal and maximal values.

Simulations on non-stationary rewards

Figure 3: $K=10$, gains from Bernoulli distributions. Best arm's gain is $1 / 2+\Delta(t)$ with $\Delta(t)=\sqrt{K \cdot \log (t) / t}$. Others are stationary with a mean of $1 / 2$.

References I

婁
N. Ailon, Z. Shay Karnin, and T. Joachims.

Reducing dueling bandits to cardinal bandits.
In ICML 2014, volume 32 of JMLR Proceedings, pages 856-864, 2014.
Reter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire.
The nonstochastic multiarmed bandit problem.
SIAM Journal on Computing, 32(1):48-77, 2002.
圊 F. Radlinski and T. Joachims.
Active exploration for learning rankings from clickthrough data.
In KDD 2007, pages 570-579. ACM, 2007.

References II

目 Yevgeny Seldin, Csaba Szepesvári, Peter Auer, and Yasin Abbasi-Yadkori.
Evaluation and analysis of the performance of the exp3 Algorithm in stochastic environments.
In EWRL, volume 24 of JMLR Proceedings, pages 103-116, 2012.
T. Urvoy, F. Clerot, R. Féraud, and S. Naamane. Generic exploration and K-armed voting bandits. In ICML 2013, volume 28 of JMLR Proceedings, pages 91-99, 2013.

囯 Y. Yue and T. Joachims.
Beat the mean bandit.
In ICML 2011, pages 241-248. Omnipress, 2011.

References III

围 Masrour Zoghi, Shimon Whiteson, Remi Munos, and Maarten de Rijke.
Relative upper confidence bound for the k -armed dueling bandit problem.
In ICML 2014, volume 32 of JMLR Proceedings, pages 10-18, 2014.

