Adaptively Tracking the Best Arm with an

Der Wissenschaftsfonds.

Peter Auer, Pratik Gajane, Ronald Ortner
\{auer,pratik.gajane,ronald.ortner\}@unileoben.ac.at
Montanuniversität Leoben

Introduction

- Multi-Armed Bandits (MAB): Simple setting for explorationexploitation trade-off
- Classical stochastic MAB: Stationary reward distributions.
\rightarrow Switching Bandits [1]: Stochastic MAB with non-stationary reward distributions
- Application : Real-time content optimization of websites

Problem setting

- At each time $t=1,2, \ldots, T$, algorithm \mathfrak{A} selects an arm $a_{t} \in\{1,2\}$.
- It receives $r_{t} \sim D_{t}\left(a_{t}\right)$ with mean $\mu_{t}\left(a_{t}\right)$.
- Reward distributions D_{t} may change abruptly at certain times.
- Algorithm has no knowledge about the number of changes L.
- Optimize regret $\mathbf{R}_{\mathfrak{A}}=\sum_{\mathbf{t}=\mathbf{1}}^{\mathbf{T}} \max _{\mathbf{a}} \mu_{\mathbf{t}}(\mathbf{a})-\mathbb{E}\left[\sum_{\mathbf{t}=\mathbf{1}}^{\mathbf{T}} \mu_{\mathbf{t}}\left(\mathbf{a}_{\mathbf{t}}\right)\right]$

Algorithm AdSwiTch (Sketch)

- Episodic algorithm with each episode having two phases.
- Estimation phase: Both arms are selected alternatingly, until better arm has been identified.
- Exploitation and checking phase
\triangleright Mostly exploit the empirical best arm.
\triangleright Sometimes sample both arms to check for change. If a change is detected then a new episode is started.

Regret Bound

Theorem 1. When ADSwitch is run with with sufficiently large C_{1} and C_{2}, then its regret for a switching bandit problem with two arms and L changes is at most

$$
O((\log T) \sqrt{(L+1) T})
$$

Discussion and Further Directions

- The best known lower bound is $\Omega(\sqrt{L T})$, which holds even when L is given to the algorithm.
- Previously, upper bounds $\tilde{O}(\sqrt{L T})$ were known only for algorithms which receive L as input [1, 2].
- Our algorithm can be extended for K arms and achieves $O(K(\log T) \sqrt{(L+1) T})$ regret.
- A version of our algorithm achieves variational regret $\tilde{O}\left(V^{1 / 3} T^{2 / 3}\right)$ (which is order-optimal [3]) without knowing the variation $V=$ $\sum_{t} \max _{a}\left|\mu_{t}(a)-\mu_{t-1}(a)\right|$.
- Future work: Switching adversarial bandits and Markov Decision Processes.

Key references

[1] Aurélien Garivier and Eric Moulines: On upper-confidence bound policies for switching bandit problems, ALT 2011.
[2] Robin Allesiardo, Raphael Féraud and Odalric-Ambrym Maillard: The non-stationary stochastic multi-armed bandit problem, IJDSA 2017.
[3] Omar Besbes, Yonatan Gur, and Assaf Zeevi: Stochastic Multi-ArmedBandit Problem with Non-stationary Rewards, NIPS 2014.

Algorithm AdSwitch

: Input: Time horizon T
2: Parameters: $C_{1}, C_{2}>0$
3: Initialize $k=0$
For each episode k, let τ_{k}^{0} be the time when episode k starts.
Estimation of $\hat{\Delta}_{k}$
4: Sample both arms alternatingly until the condition of Step 5 is met.
Let $\hat{\mu}_{a}\left[t_{1}, t_{2}\right]$ be the empirical mean for arm a for samples obtained from times $t \in\left[t_{1}, t_{2}\right)$.
5: If at time t there is a $\sigma, \tau_{k}^{0} \leqslant \sigma<t$, with

$$
\left|\hat{\mu}_{1}[\sigma, t]-\hat{\mu}_{2}[\sigma, t]\right|>\sqrt{\frac{C_{1} \log T}{t-\sigma}}
$$

then set

$$
\begin{gathered}
\hat{\mu}_{k, a}=\hat{\mu}_{a}[\sigma, t] \quad \text { and } \quad \hat{\Delta}_{k}=\left|\hat{\mu}_{k, 1}-\hat{\mu}_{k, 2}\right|, \\
\bar{a}_{k}=\arg \max _{a} \hat{\mu}_{k, a} \quad \text { and } \quad \underline{a}_{k}=\arg \min _{a} \hat{\mu}_{k, a}
\end{gathered}
$$

and proceed with Step 6.

Exploitation and checking:

6: Let $d_{i}=2^{-i}$ and $I_{k}=\max \left\{i: d_{i} \geqslant \hat{\Delta}_{k}\right\}$.
Randomly choose i from $\left\{1,2, \ldots, I_{k}\right\}$ with probabilities $\mathbf{p}_{\mathbf{k}, \mathbf{i}}=\mathbf{d}_{\mathbf{i}} \sqrt{\frac{\mathbf{k}+\mathbf{1}}{\mathbf{T}}}$.
With the remaining probability select arm \bar{a}_{k} and repeat step 6 .
If an i is chosen, sample both arms alternatingly for $\mathbf{s}_{\mathbf{i}}=\mathbf{2}\left\lceil\frac{\mathbf{C}_{\mathbf{2}} \log \mathbf{T}}{\mathbf{d}_{\mathbf{i}}^{2}}\right\rceil$ steps to check for changes of size d_{i} : if for any arm a,

$$
\hat{\mu}_{\bar{a}_{k}}\left[t, t+s_{i}\right]-\hat{\mu}_{\underline{a}_{k}}\left[t, t+s_{i}\right] \notin\left[\hat{\Delta}_{k}-\frac{d_{i}}{4}, \hat{\Delta}_{k}+\frac{d_{i}}{4}\right],
$$

then set $k \leftarrow k+1$, and start a new episode at Step 4 .

