

Corrupt Bandits

Pratik Gajane^{†*}, Tanguy Urvoy[†], Emilie Kaufmann^{*}

pratik.gajane@inria.fr, tanguy.urvoy@orange.com, emilie.kaufmann@univ-lille1.fr Orange labs[†], CNRS & CRIStAL (SequeL)^{*}

Motivation

- preserve user privacy in online recommender systems.
- conceal individual choices about sensitive behaviors and beliefs.
 - Example: Randomized response method (RR) [Warner (1965)]
- \rightarrow We introduce generalized *corruption functions*.

Problem setting

- K arms with means μ_1, \ldots, μ_K w.l.o.g. $\mu_1 > \mu_{2, \cdots, K}$

UCB-CF

Modification of UCB1 [Auer et al. (2002)] with changed index given below:

$$\operatorname{Index}_{a}(t) = \begin{cases} g_{a}^{-1} \left(\hat{\lambda}_{a}(t) + \sqrt{\frac{\log t}{2N_{a}(t)}} \right), & \text{if } g_{a} \text{ is increasing} \\ g_{a}^{-1} \left(\hat{\lambda}_{a}(t) - \sqrt{\frac{\log t}{2N_{a}(t)}} \right), & \text{if } g_{a} \text{ is decreasing} \end{cases}$$

Theorem 3. The expected regret of UCB-CF using $f(t) = \log(t) + \log(t)$ $3\log(\log(t)), \operatorname{Regret}_T \in \mathcal{O}\left(\sum_{a=2}^K \frac{\Delta_a \log(T)}{(g_a(\mu_a) - g_a(\mu^*))^2}\right)$

Thompson Sampling-CF

- Learner pulls an arm A_t at time $t = 1, \ldots, T$
 - \triangleright receives **reward** ~ Bernoulli distribution with mean μ_{A_t}
 - \triangleright observes **feedback** ~ Bernoulli distribution with mean λ_{A_t}
- A known corruption function $g_a: \mu_a \mapsto \lambda_a$
- Assumption: g_a is monotonic and continuous.
- \rightarrow <u>Goal</u>: Minimize Regret_T = $\sum_{a=2}^{K} \Delta_a \mathbb{E}[N_a(T)]$ where $N_a(T) = \sum_{t=1}^T \mathbb{1}_{(A_t=a)}$ and $\Delta_a = \mu_1 - \mu_a$

Randomized response

- Corruption function $g_a : \lambda_a = p_{10}(a) + (p_{11}(a) p_{10}(a))\mu_a$
- $\blacktriangleright \mathbb{P}(\text{feedback} = x \mid \text{reward} = y) = \mathbb{M}_a(x, y)$

$$\mathbb{M}_{a} = \begin{bmatrix} 0 & 1 \\ p_{00}(a) & p_{01}(a) \\ 1 & p_{10}(a) & p_{11}(a) \end{bmatrix}$$

Lower bound on regret

1: Keep a Beta posterior distribution on the mean feedback of each arm. 2: At time t, for each arm a, draw a sample $\theta_a(t)$ from the posterior distribution on λ_a^{ν} . 3: Pull the arm for which $g_a^{-1}(\theta_a(t))$ is largest.

Corrupted feedback to enforce differential Privacy

Definition 2. A bandit feedback corruption scheme \tilde{g} is (ϵ, δ) -differentially private if for all reward sequences R_{t1}, \ldots, R_{t2} and R'_{t1}, \ldots, R'_{t2} that differ in at most one reward, and for all $\mathcal{S} \subseteq Range(\tilde{g})$

 $\mathbb{P}[\tilde{g}(R_{t1},\ldots,R_{t2})\in\mathcal{S}]\leqslant e^{\epsilon}\cdot\mathbb{P}[\tilde{g}(R'_{t1},\ldots,R'_{t2})\in\mathcal{S}]+\delta$

- Privacy preserving input
- Differential privacy requires that $\max_{a \in K} \left(\frac{p_{00}(a)}{p_{11}(a)}, \frac{p_{11}(a)}{p_{10}(a)} \right) \leq e^{\epsilon} + \delta$
- \blacktriangleright To achieve (ϵ, δ) -differential privacy with randomized response,

$$\mathbb{M}_{a} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} \frac{e^{\epsilon} + \delta}{1 + e^{\epsilon} + \delta} & \frac{1}{1 + e^{\epsilon} + \delta} \\ \frac{1}{1 + e^{\epsilon} + \delta} & \frac{e^{\epsilon} + \delta}{1 + e^{\epsilon} + \delta} \end{bmatrix}$$

Definition 1. An uniformly efficient algorithm for the corrupt bandit problem is an algorithm which, for any bandit model, has $\operatorname{Regret}_{T} = o(T^{\alpha})$ for all $\alpha \in]0,1[$.

Theorem 1. Fix the corruption functions $\{g_a\}_{a=1}^K$. Any uniformly efficient algorithm, for a corrupt bandit problem, satisfies

$$\liminf_{T \to \infty} \frac{\operatorname{Regret}_T}{\log(T)} \ge \sum_{a=2}^K \frac{\Delta_a}{d(\lambda_a, g_a(\mu_1))} \qquad \text{where } d(x, y) = \operatorname{KL}$$

KLUCB-CF

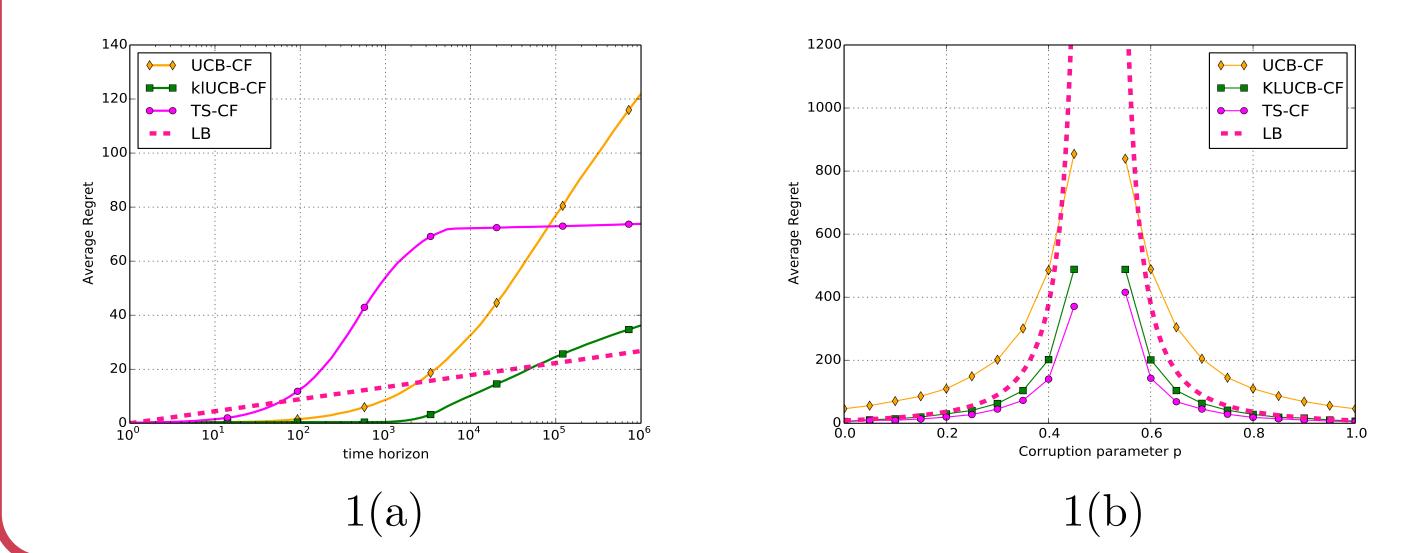
- 1: Input: A bandit model having K arms
- 2: **Parameters:** $\{g\}_{a=1}^{K}$, a non-decreasing (exploration) function $f: \mathbb{N} \to \mathbb{N}$ $\mathbb{R}, d(x, y) = KL(\mathcal{B}(x), \mathcal{B}(y)).$
- 3: Initialization: Pull each arm once.
- 4: At time $t \ge K + 1$, do
- Compute for each arm a, one of the following quantities: 5:

Index_a(t) = $\begin{cases} g_a^{-1}(\ell_a(t)) & \text{if } g_a \text{ is decreasing} \\ g_a^{-1}(u_a(t)) & \text{if } g_a \text{ is increasing,} \end{cases}$

Experiments

 $(\mathcal{B}(x), \mathcal{B}(y))$

- Randomized response as corruption function.
- Scenario 1: Two arms with mean rewards 0.9 and 0.6
- Figure 1(a) shows average regret for $p_{00}(1) = p_{11}(1) = 0.6$ and $p_{00}(2) = p_{11}(2) = 0.9$
- Figure 1(b) shows the performance for varying values of $p = p_{00}(1) =$ $p_{11}(1) = p_{00}(2) = p_{11}(2)$ with $T = 10^4$



where

 $\ell_a(t) = \min\{q : N_a(t) \cdot d(\hat{\lambda}_a(t), q) \leq f(t)\}$ $u_a(t) = \max\{q : N_a(t) \cdot d(\hat{\lambda}_a(t), q) \leq f(t)\}$

Pull arm $A_{t+1} = \arg \max \operatorname{Index}_a(t)$. 6: Observe feedback F_{t+1} . 7:

Theorem 2. The expected regret of KLUCB-CF using $f(t) = \log(t) + \log(t)$ $3\log(\log(t))$ on a K-armed corrupted bandit with corruption functions $\{g_a\}_{a=1}^K$ is upper bounded by

$$\operatorname{Regret}_{T} \leq \sum_{a=2}^{K} \frac{\Delta_{a} \log(T)}{d \left(\lambda_{a}, g_{a}(\mu_{1})\right)} + O(\sqrt{\log(T)}).$$

Conclusion

- ▶ UCB-CF, KLUCB-CF, and Thompson Sampling-CF provide suitable solutions. KLUCB-CF is the best solution as it is asymptotically optimal and outperforms others in experiments.
- ▶ We provide appropriate corruption matrices that achieve a desired level of differential privacy.

Key references

[Warner Stanley (1965)] Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias.

[Auer Peter, Cesa-Bianchi Nicolò, and Fischer Paul (2002)] Finite-time Analysis of the Multiarmed Bandit Problem.